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The opportunity to manipulate small-scale objects pushes us to the limits of our understanding of physics.
Particularly promising in this regard is the interdisciplinary field of levitation, in which light fields can be
harnessed to isolate nanoparticles from their environment by levitating them optically. When cooled towards
their motional quantum ground state, levitated systems offer the tantalizing prospect of displaying mesoscopic
quantum properties. While the interest in levitation has so far been focused mainly on manipulating individual
objects with simple shapes, the field is currently moving towards the control of more complex structures, such
as those featuring multiple particles or different degrees of freedom. Unfortunately, current cooling techniques
are mostly designed for single objects and thus cannot easily be multiplexed to address such coupled many-body
systems. Here we present an approach based on the spatial modulation of light in the far field to cool multiple
nano-objects in parallel. Our procedure is based on the experimentally measurable scattering matrix and on its
changes with time. We demonstrate how to compose from these ingredients a linear energy-shift operator, whose
eigenstates are identified as the incoming wavefronts that implement the most efficient cooling of complex
moving ensembles of levitated particles. Submitted in parallel with Hüpfl et al. [Phys. Rev. Lett. 130, 083203
(2023)], this article provides a theoretical and numerical study of the expected cooling performance as well as
of the robustness of the method against environmental parameters.
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I. INTRODUCTION

With the ability to simultaneously manipulate multiple
objects comes the possibility of interrogating the basics of
fundamental physics. For instance, Maxwell’s suggested rear-
rangement of a gas of particles by a demon [1] has questioned
our understanding of the second law of thermodynamics.
Many-body manipulation also enables the assembly of new
states of matter. For instance, in quantum physics the cool-
ing of collective systems towards their ground state has
been acknowledged by multiple Nobel prizes, e.g., for laser
cooling [2] or the realization of Bose-Einstein condensates
[3]. Yet conventional approaches in many-body manipula-
tion are typically restricted to small scales and often prove
to be case specific. At the mesoscopic scale, the field of
levitation has recently emerged as an opportunity to harness
optical forces to manipulate objects decoupled from their en-
vironment [4,5], while offering remarkable opportunities for
high-resolution sensing [6–8] or nonequilibrium thermody-
namics [9,10]. Mostly implemented through optical tweezers,
levitation has been mainly restricted to single objects so far,
since the multiplexing of traps is challenging due to the op-
tical binding among elements [11,12]. Nonetheless, exciting
progress in the cooling and manipulation of two levitated
particles has very recently been reported [13–17].

Experimentally, levitated objects are manipulated through
schemes relying on local information. For instance, in cavity
cooling, an element is positioned (e.g., with tweezers) at the
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peak of the local density of optical states inside a cavity where
it will be cooled by radiation pressure [18–20]. Through a
modified cavity-cooling scheme known as coherent scattering
[21–23], the ground state of a nanometer-size bead was re-
cently reached [24]. In feedback cooling [25], the position of
a trapped particle is constantly monitored and processed by an
electronic control loop, which modulates the involved tweez-
ers to produce a force that continually opposes the object’s
motion and cools it to its ground state [26,27]. The efficiency
of such schemes is ultimately limited by the ability to impose
or extract local features: cavity cooling requires high-quality
resonances and a precise control over the particle’s location
[24], while feedback cooling relies on the detection of motion
and suffers from calibration issues [28].

Yet the same electromagnetic field that produces optical
forces at the particle also transfers information on this object
to the far field when being scattered away from its target.
In complex and multielement systems, the information on
how incoming and outgoing scattering states are related, is
conveniently stored in the scattering matrix, which is routinely
measured through wavefront shaping [29,30]. Such matrices
provide access to tailor-made light states for applications
ranging from bioimaging [31] to quantum optics [32] and
have recently been suggested for probing structural features
like mechanical actions [33,34] or optimal sensing [35]. The
question we will ask here is whether such far-field scattering
information can also be used to develop new control schemes
for the cooling of many-body systems.

The affirmative answer we provide here will allow us to
present an optimal procedure to cool levitated many-body
systems through wavefront shaping. The cooling of several
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FIG. 1. (a) Simplistic illustration of the cooling concept. A many-body system is composed of nanoparticles (blue beads) in random motion
(black arrows). The system is opened on two sides, through which spatially modulated light fields (“incident wave,” blue to yellow patterns)
get injected. The wavefronts (orange wave lines) are designed to counteract the motion of the nanoparticles. (b) In our numerical simulations,
this cooling approach is implemented in a 2D system, such as a thin waveguide (gray structure, small extension in the y direction), in which
nanoparticles (blue cylinders) experience a 2D motion in the (x, z) plane. The shaped wavefronts, which are used to cool the motion of the
nanoparticles, get injected from both sides. Inside the waveguide, the field is composed of propagating transverse electric modes (the intensity
distribution of the first two modes on each side are indicated by orange shapes). The shaped incident and outgoing wavefronts are expressed
as a linear combination of such modes through the coefficient vectors �c in, �c out. These input and output vectors are connected through the
scattering matrix, S(t ), which evolves through time t due to particles’ motion.

objects in parallel is achieved through a spatial modulation
(in the far field) of an incoming light field, which is designed
to exert (on average) optical forces counteracting the instanta-
neous motion of each particle.

Our paper is organized as follows: in Sec. II we derive the
cornerstone relation of this work (the so-called energy-shift
relation) and explain the procedure to extract the wavefronts
performing the cooling. Then in Sec. III the procedure is
applied to cool many-body systems composed of spherical
and nonspherical nanoparticles alike, which are either freely
moving or optically trapped. Finally in Sec. IV we discuss the
robustness and the performance of the method. This article is
submitted in parallel to [36], which provides a considerably
shortened account of the main results presented here.

II. COOLING PROCEDURE

We consider the general setting of an electromagnetic field
propagating in a dielectric medium, which is described by a
linear permittivity, ε, and a linear permeability, μ. The field
is made up of time-harmonic waves oscillating at an optical
frequency ω, while the medium consists of a many-body
system composed of Nscat moving nanoparticles with Ndof

total degrees of freedom. Here we aim to cool this complex
system through the injection of spatially modulated light fields
[Fig. 1(a)]. The motion of the nanoparticles as a function
of time t happens on a time-scale that is much longer than
that of the light field (i.e., the particle velocity is small com-
pared to the speed of light, v � c). This adiabatic motion is
included in our theory by a nonuniform and time-dependent
permittivity, ε(r, t ), that is slowly evolving over time with the
displacements of the rigid particles. The far-field scattering
of these nanoparticles is encapsulated in a linear scattering
matrix, S. Physically, the scattering matrix relates any field
(i.e., wavefront) incoming into the system, �c in, to the field
that is scattered towards the far field, �c out = S�c in [30]. Ex-
perimentally, S can be inferred by sending in a succession of
predefined spatially modulated wavefronts, while recording
the corresponding scattered fields [29]. To access the total
(i.e., mechanical) energy of the nanoparticles, we recast S into

a new operator, referred to as the energy-shift matrix,

QES = −iS†∂t S, (1)

where ∂t corresponds to the time derivative due to the motion
of the particles. In the context of electron transport, a modified
version of this operator was introduced by Avron et al. to
describe how externally driven charge pumps pass electrons
through a conductor [37,38]. Here instead, for a system sub-
ject to weak nonconservative forces, we will explain how QES
can be harnessed to construct spatially modulated wavefronts
that are able to optimally reduce the macroscopic total energy
of many-body systems–which is equivalent to a cooling of
their center-of-mass temperature [39]. Specifically, we will
introduce a cooling strategy in which wavefronts are designed
in real time to exert optical forces that are “optimally” coun-
teracting the motion of all the nanoparticles simultaneously.

A. Energy-shift relation

We will now give a sketch of the main analytic results of
this article. The complex amplitudes of the time harmonic
optical fields are governed by Maxwell’s equations,

rot �E = iω �B,

rot �H = −iω �D, (2)

where the different components implicitly depend on the
nanoparticles’ positions and therefore evolve with time t . For
the sake of simplicity, we will focus in the main text on
dielectric elements [i.e., described by a real time-dependent
permittivity ε(r, t ) and constant permeability μ = μ0]. We
show in Appendix A that, in a scattering region � of boundary
∂� with an outgoing normal vector �n, the following equality
holds:∫

∂�

( �E∗ × ∂t �H − �H∗ × ∂t �E ) · d�n = iω
∫

�

| �E |2∂tε. (3)

We emphasize here that the time derivative ∂t is in relation to
the evolution of the particles and not to the light field itself.

What makes the above Eq. (3) particularly useful is the fact
that its left-hand side involves only the fields at the boundary
of the scattering region, while its right-hand side describes the
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change in the particles’ total energy Etot imposed by the light
forces produced by the incoming wavefronts �c in.

Recasting this relation in a form involving the energy-shift
operator results in

�c in,†QES�c in = 2ω(∂t Etot − Pnc), (4)

where �c in describes an incoming spatially shaped wavefront
and Pnc the power of other nonconservative forces (e.g.,
viscous friction). Here we stress that Etot comprises the macro-
scopic mechanical energy of all the nanoparticles and thus
encompasses the kinetic energy of both translational and rota-
tional degrees of freedom as well as any potential energy (e.g.,
trapping potential).

The energy-shift relation of Eq. (4) constitutes the corner-
stone of this paper as it serves as the starting point for the
implementation of our approach to many-body cooling. When
nonconservative contributions (i.e., Pnc) remain weak, Eq. (4)
reduces to �c in,†QES�c in ≈ 2ω∂t Etot. For lossless scattering sys-
tems S is unitary, resulting in QES being Hermitian with a
corresponding decomposition into an orthogonal eigenbasis
with real eigenvalues. Thus, at any time t , the eigenvector of
QES associated with the smallest (i.e., most negative) eigen-
value will perform an instantaneous reduction of Etot that
is optimal. In the rest of this article, we will refer to such
eigenvectors as “optimal cooling states.” While in real-world
experiments the scattering matrix is typically not measured
entirely and nonconservative effects contribute, we will see
in Sec. IV B, that even in such realistic scenarios a cooling
scheme based on Eq. (4) still manages to display strong cool-
ing performance.

B. Cooling procedure

For the implementation of our cooling procedure, we sug-
gest a stroboscopic measurement of the scattering matrix
S(t ) with a sampling time step �tcool. At a certain time
t − �tcool, a basis of nonperturbing test states with weak
power is first applied successively to the nanoparticles and
the corresponding outgoing fields are measured to extract
S(t − �tcool). Then an approximation of the energy-shift oper-
ator at time t is obtained with two consecutive measurements
of S, taking the following form: QES(t ) ≈ −iS†(t )[S(t ) −
S(t − �tcool)]/�tcool. Finally, in line with Eq. (4), the optimal
cooling state is found by computing the eigenstate of QES(t )
associated with its most negative eigenvalue. This state is then
applied at a strong power to the system during �tcool to cool
the system before the whole procedure is repeated at time
t + �tcool.

C. Stochastic motion of the nanoparticles

Throughout this paper, our method will be applied to
nano-objects with various geometries that are in contact with
a thermal bath (temperature Tenv) and subject to Brownian
motion. For instance, under partial-vacuum conditions, the
dynamic of a nanosphere of mass mi (with only translational
degrees of freedom) is governed by a Langevin equation,

�̇pi(t ) = −γi �pi(t ) + mi�g + �Fcool,i(t ) +
√

2Di �ξi(t ), (5)

in which �pi stands for the particle’s momentum, γi for its
damping rate, and �g for gravity, while �Fcool,i describes the
force of the light field. The Brownian motion induced by the
coupling to the thermal bath manifests itself in Eq. (5) through
the presence of a stochastic term

√
2Di �ξi(t ), whose amplitude

is set by the dissipation-fluctuation relation Di = kBTenvγimi

and in which �ξi(t ) corresponds to an independent Gaussian
white noise with unit variance. A complete description of the
dynamics of nonspherical objects (with both translational and
rotational degrees of freedom) is provided in Appendix B 1.

III. SIMULATIONS

A. Numerical model

To keep our numerical simulations computationally man-
ageable, we will restrict ourselves to nanoparticles following a
2D motion in the (x, z) plane. Moreover, to reduce the number
of optical modes and thus to limit the dimension of S, we
confine the nanoparticles into a waveguide with a thin rectan-
gular cross section, where also the electromagnetic field can
be treated as scalar. A sketch of this can be seen in Fig. 1(b).
Yet we emphasize that this restriction to a 2D geometry is in-
tended only to reduce computational complexity. As we show
in Appendix A, our method can also be applied in free space
as well as for 3D objects with nontrivial shapes. The field
propagation can be directly linked to the scattering problem of
a 2D waveguide filled with circular scatterers [34]. Modulated
wavefronts get injected from both sides, while the motion of
the nanoparticles fulfills Eq. (5) and the rare occurrences of
collisions between particles or with the waveguide walls are
handled through an elastic model preserving kinetic energy.
Moreover, the average displacement of the objects remains
small compared to the system’s dimensions, which makes the
bouncing of the particles off the walls rare events.

Inside the thin waveguide only TE waves can propagate
and the electric field reads �E TE = ψ (x, z)êy, while the scat-
terers are y-symmetric dielectrics ( �∇ε ⊥ �E TE). Thus, at each
time t , the field propagation fulfills the scalar Helmholtz equa-
tion,

[� + ω2με(x, z)]ψ (x, z) = 0. (6)

The electric field inside the waveguide and away from the
scattering region will be decomposed into a discrete set
of transverse propagating modes with spatial profile �η j (x)
and corresponding wave vector in propagation direction kz, j

[orange shapes in Fig. 1(b)]. These flux-normalized eigen-
modes of Eq. (6) in the asymptotic (scattering-free) part of
the waveguide, serve as a complete basis to assemble S.
Equivalently, the incoming modulated wavefronts in Eq. (4)
will be described as a linear combination of such modes,∑

j �η j (x, y)cin
j eikz, j z, in which the coefficients cin

j constitute the
vector �c in.

If not stated otherwise, our simulations will be run for
a waveguide width W ≈ 2.8 µm, corresponding to M = 10
propagating modes for an optical wavelength λ = 532 nm.
The particles are coupled to a thermal bath at a tempera-
ture Tenv = 30 K, providing a damping rate γ = 6 Hz (see
Sec. II C). Before cooling, the nano-objects will start from
individual velocities following a Boltzmann distribution with
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(a) (b) (c)

FIG. 2. (a), (b) Optimal cooling states applied to a single circular nanobead with radius 750 nm in (a) and 75 nm in (b), respectively. The
waveguide in which the particles move has a width of W = 5.5 µm, corresponding to M = 10 propagating waveguide modes. The instantaneous
velocities of the beads are marked by white arrows, while the optimal cooling states create scattering patterns that produce forces marked by
red arrows. The quantity ρ trans

w below the panels characterizes the correlation between the velocity and the force vectors (limited by the globally
optimum value of ρ trans

w = −1). (c) Optimal cooling states applied to a rectangular particle experiencing translation and rotation. The waveguide
dimensions are identical to (a) and (b), while the longer edge of the rectangle is set to ≈1.5 µm. The rigid body translation and rotation of the
particle are marked by the straight and curved white arrows, respectively. The optimal cooling state induces a force on the center of mass and
a torque that are marked by the straight and curved red arrows. ρw is the total correlation of center of mass and angular velocity against the
optical force and torque.

a mean kinetic energy kBTenv/2 along each degree of freedom.
The sampling time will be fixed to �tcool = 1 µs. More details
about the simulations’ protocol are provided in Appendix C.

B. Single freely moving objects

To illustrate the role of optimal cooling states, we first
consider simple single-particle systems. In Fig. 2 our method
is applied to different individual objects. At a given time t ,
the optimal cooling state is computed following the strategy
described in Sec. II B and injected into the waveguide. We
observe that optimal cooling states generally correspond to
complex light fields, which produce optical forces (red ar-
rows) that are systematically opposed to the instantaneous
velocities of the nanoparticles (white arrows). For transla-
tional degrees of freedom (labeled as “trans” in the following),
the instantaneous cooling efficiency can be quantified through
a weighted force-velocity correlation. For multiple particles
labeled by the index i, this correlation is defined as

ρ trans
w :=

∑
i �pi · �Fcool,i(mi )−1√∑

i �p2
i (mi )−1

√∑
i
�F 2
cool,i(mi )−1

, (7)

which reduces to ρ trans
w = �p · �F/(‖ �p‖‖ �F‖) for single particles.

Physically, an ideal cooling will display a maximal anticorre-
lation (i.e., ρ trans

w = −1). In the case of multiple and identical
particles, ρ trans

w measures the colinearity between the force
and velocity vectors. For spherical objects that are provided
with only translational degrees of freedom, Figs. 2(a) and 2(b)
show that the optimal cooling state applies a force that is al-
most completely anticorrelated to the motion of the particles,
both with r 
 λ and r � λ, respectively. In Appendix B 2,
we explain that Eq. (7) can be extended to include both trans-
lational and rotational degrees of freedom (the latter will be
labeled as “rot” in the following). Figure 2(c) provides an

example where the optimal cooling state is able to counteract
both rotational and translational motions at the same time.
Here a correlation of ρw = −0.6 is reached and will enable
to efficiently slow all the degrees of freedom [example of
efficient cooling provided in Fig. 3(b)].

C. Multiple freely moving objects

In the next step, we apply our cooling states to a multi-
particle system composed of Nscat = 10 identical polygons.
For this subsection only, we will assume no friction from
the environment (i.e., zero damping rate), which is motivated
by the difficulty of precisely modeling viscous friction and
dissipation for elements with nontrivial geometrical shapes.
Figure 3(a) shows the performance of our cooling procedure
applied to 10 triangles (blue), 10 squares (orange), and 10
pentagons (green), respectively. Here the total energy of the
system, Etot, reduces to its kinetic part. The dotted (solid) lines
show the evolution of the translational (rotational) kinetic
energy, E trans

kin (E rot
kin) throughout the entire cooling procedure.

This plot nicely illustrates that, at each time step, the optimal
cooling state imposes the largest decrease of energy in a
“greedy” way: the degrees of freedom that are the easiest to
access get cooled first, while those that are harder to work on
get cooled when it is economical to do so.

For instance, in the case of triangular shapes, on which
strong optical torques can be applied owing to their pro-
truding edges, the procedure addresses almost simultaneously
E trans

kin and E rot
kin. In the case of squares, on which torques

are harder to apply, the procedure cools first the transla-
tional degrees of freedom. The rotational ones are acted upon
when E trans

kin becomes small such that cooling E rot
kin becomes

valuable (around t ≈ 300 µs). This trade-off can be observed
in the bottom of Fig. 3(b), which displays ρ trans

w (blue) and
ρrot

w (orange) throughout the cooling of the 10 squares (see
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FIG. 3. (a) Results of the cooling procedure applied to 10 triangles, 10 squares, and 10 pentagons, respectively, moving in a waveguide
without friction (all particles have the same outer radius of r = 150 nm). Blue, orange, and green indicate the particle geometry (see inset).
Dotted and solid curves display the evolution of the translational, E trans

kin , and rotational, E rot
kin, kinetic energy throughout the process. The

sampling time �tcool = 1 µs, and the light field is characterized by a power P = 20 µW, a wavelength λ = 532 nm, and M = 10 transverse
waveguide modes. Compared to translational degrees of freedom, rotational degrees of freedom are addressed at characteristic times dependent
of the particles’ shapes. (b) Evolution of the correlation between force velocity (ρ trans

w , blue) and between torque-angular velocity (ρrot
w , orange)

during the cooling of the 10 squares; see orange curves in (a) (data include a running average over 10 time steps). At early times, only the
translation degrees of freedom are cooled and ρ trans

w settles to high negative values while ρrot
w remains low. The situation is reversed when

the rotational degrees of freedom start to be cooled. A snapshot of the optical field (yellow to blue pattern) produced by an optimal cooling
state is provided in inset. (c) Simulation results for Nscat = 10 beads of radius 75 nm, subject now to a stochastic motion as in Eq. (5) that is
characterized by a damping rate γ = 1 kHz and a surrounding temperature Tenv = 30 K. All the other parameters are identical to the ones used
in (a) and (b). In phase (i), the velocities of the beads start out thermally distributed according to a (low) initial temperature of T = 0.01 · Tenv.
Thermalization to the bath temperature at Tenv = 30 K is observed in the first ≈2 ms (the horizontal blue dotted line indicates the prediction
from the equipartition theorem). Over the next ≈1 ms in the constant state phase (ii), a field constant over time (P = 20 µW) gets injected from
both waveguide leads and produces an increase in energy. Afterwards, the field is turned off and in phase (iii), from 3 ms to 5 ms, the particles
thermalize back towards Tenv. Finally, in the cooling phase (iv), our method is applied using a power of 20 µW, 2 µW or 200 nW (solid orange,
dashed green, and dotted red curves, respectively), leading to a significant drop in energy.

inset). The procedure cools the translations during the first
300 µs and then switches to mainly cooling the rotations
by applying torques, before ultimately settling into a final
state around t ≈ 1 ms. For pentagons, the applied torques
are even smaller and the final state is thus reached only after
5 ms (not shown). As shown in the top of Fig. 3(b), optimal
cooling wavefronts generate complex light fields that perform
a nontrivial transfer of momentum to the different particles.
Moreover, such light fields can also create complex interac-
tions between particles (e.g., optical binding [12]) that are
intrinsically included in our formalism and serve to cool the
system.

D. Thermal bath influence

We now investigate the performance of our procedure in
the presence of Brownian motion and damping, both resulting
from a coupling to the environment [see Eq. (5)]. Figure 3(c)
shows the corresponding results for Nscat = 10 circular par-
ticles. To emphasize the action of optimal cooling states as
compared to trivial wavefronts and to exemplify the stochas-
tic dynamics of the nano-objects, we study the system in
four successive and distinct scenarios labeled as (i) to (iv):
(i) Initially, the nanoparticles start out from a Boltzmann dis-
tribution, corresponding to a temperature Tenv/100 that is 100
times smaller than the environment at Tenv. During the first
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2γ −1 = 2 ms (t ∈ [0, 2] ms, gray), the particles thermalize
to Tenv, i.e., to an energy given by the equipartition theorem
[horizontal blue dotted line in Fig. 3(c)]. (ii) In the next
≈1 ms, a time-constant light field of strength P = 20 µW is
applied from both ends of the waveguide along its principal
transverse mode. As expected for such an unspecific external
excitation that “compresses” the particles from the outside,
the energy of the system is observed to increase and to settle
at a high-energy steady state. (iii) As soon as this constant
light field is turned off, the system thermalizes again and takes
about 2 ms to settle back to Tenv. (iv) Finally, our cooling
procedure is applied. Specifically, cooling is performed three
times using three different powers of the incoming laser light:
20 µW (solid orange), 2 µW (dashed green), and 200 nW (dot-
ted red). We observe the systematic cooling of the many-body
system at a rate that increases the more optical power is used
for cooling. In these cooled configurations, the velocities of
the nanoparticles follow a thermal distribution.

For such freely moving many-body systems, the optical
power turns out to be crucial to counteract the influence
of gravity. When the cooling power is too weak (below
≈10 nW), the particles will typically fall as optical forces can-
not compensate gravity. Conversely, when the optical power is
too strong (above ≈20 µW), we sometimes observe a spatial
drift of the system after it has been cooled. Yet the amplitude
of this drift is very small and will impact our system on
timescales that are considerably longer than typical cooling
times.

E. Multiple trapped particles

To illustrate the versatility of our approach, we now apply
it to multiple nanoparticles trapped within an optical field
(rather than to freely moving particles as above). As shown
in Fig. 4(a), five nanobeads subject to Brownian motion are
trapped to form a chain of optomechanical levitated res-
onators [25,39]. Specifically, a second laser, which is more
intense (with 0.2 mW power) and which operates at a longer
wavelength (with λtrap = 1.5 µm) than the cooling field, gets
injected simultaneously on both sides of the waveguide along
its principal transverse mode. This field forms a standing
wave, whose intensity maxima create local trapping potentials
where nanobeads get confined. Each particle within its own
trap constitutes an optomechanical resonator that oscillates
with a frequency close to 40 kHz along z and 8.5 kHz along
x. Taken together, these nanobeads form a chain of coupled
resonators, where the motion of one element affects the others
[40].

Initially, the nanoparticles’ positions and velocities start
out thermally distributed inside the trap, and Fig. 4(b) displays
the time evolution of the system’s total energy. In the first
500 µs, the system is thermalized at a level given by the
equipartition theorem (dotted blue line). At t = 500 µs, the
procedure is applied with a power of 200 nW, and we ob-
serve the cooling of the five objects corresponding to a
reduction of more than four orders of magnitude in their
total energy in ≈1 ms. As expected for levitated oscilla-
tors [41], this cooling approach also broadens the spectral
response of each mechanical resonator along the chain. For
instance, Fig. 4(c) shows the power spectral density, |Szz|,

associated with the longitudinal z motion of one of the five
trapped particles in the absence of cooling (orange curve),
which displays a main resonance at 40 kHz and where
the presence of harmonics (e.g., ωz/2, . . . , 3ωz) is indica-
tive of the coupling among elements. The green and blue
curves represent the power spectral density recorded after
cooling with a power of 20 nW and 200 nW, respectively.
We observe that when the cooling power is increased, the
harmonics progressively disappear and the main resonance
spectrally broadens owing to the reduction of the system’s
center-of-mass temperature. Specifically, through a fitting of
the power spectral densities [dashed lines in Fig. 4(c); see
Appendix C)], we estimate that starting from a temperature
of Tenv = 30 K, the degree of freedom is cooled to effective
temperatures of around 23 mK and 0.7 mK for 20 nW and 200
nW, respectively. When the optical power is increased above
200 nW, the cooling progressively degrades (not shown).
Thus, as explained in Sec. III F, we observe that cooling
appears to be optimal for a power close to 200 nW. In Ap-
pendix D we discuss how this cooling scheme can be viewed
as an extension of cold damping to many-body systems.

F. Cooling efficiency

In this section, we investigate whether the total energy
reached through our procedure can be estimated based on
purely theoretical considerations. As shown in Appendix E,
estimates can be derived for trapped and freely moving par-
ticles alike. Under the assumption of weak damping and fast
enough sampling, the average total energy obtained after the
cooling process (referred to as the cooled energy) reads

Ecool = C

(
‖ �Fcool‖2

w�tcool + NdofkBTenv〈γ 〉dof

2‖ �Fcool‖wρw

)2

, (8)

where C = 1 for free particles and C = 2 for trapped particles.
In the case of trapped elements, C = 2 originates from the

fact that the particles are subject to conservative forces and
accumulate potential energy.

In Eq. (8) ‖ �Fcool‖2
w = 〈∑i

�F 2
cool,i(2mi )−1〉t stands for the

time-averaged weighted total optical force exerted on the par-
ticles and ρw for the time-averaged weighted force-velocity
correlation fulfilling

ρw = ρ trans
w :=

〈∑
i �pi · �Fcool,i(2mi )−1

〉
t

‖ �p‖w‖ �Fcool‖w

. (9)

In both Eqs. (8) and (9), the brackets 〈·〉t indicate a time
average over the physical quantities after arrival in the cooled
steady state, while 〈·〉dof corresponds to the mean over all Ndof

degrees of freedom (Ndof ∝ Nscat for identical particles).
Interestingly, the numerator of Eq. (8) is composed of

two terms with different physical origins. The term on the

left, ‖ �Fcool‖2
w�tcool, shows that the cooled energy is limited

by the transfer of momentum performed by the optical field
to the particles at each cooling step. The term on the right,
NdofkBTenv〈γ 〉dof, emphasizes the contribution of the thermal
bath to the cooled energy. For different configurations of
Nscat = 5 trapped particles [similar to Fig. 4(a)], Fig. 4(d) plots
the cooled energy obtained through simulations for different
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FIG. 4. (a) Nscat = 5 circular nanobeads (r = 75 nm, white circles) are trapped by the standing-wave pattern of a laser (blue-to-yellow
surface). This trapping laser (λtrap = 1.5 µm, Ptrap = 200 µW) gets injected from both sides of the waveguide along its fundamental transverse
mode. The stochastic motion of the beads is described by Eq. (5) (γ = 6 Hz, Tenv = 30 K) with the additional influence of gravity (g, red
arrow) and of the trapping field. The cooling light field (not shown here) is characterized by a wavelength λ = 532 nm and M = 10 transverse
waveguide modes. (b) Evolution of Etot throughout the cooling process. In the first 500 µs (light blue region), no cooling procedure is applied,
and the beads stay thermalized at Tenv (blue dashed line). The procedure is launched at t = 500 µs with a cooling power of 200 nW (yellow
region) and is observed to lower Etot to 10−25J in ≈2 ms. (c) Power spectral density, |Szz|, of the spatial component z for the rightmost of
the five particles in (a) (similar behaviors are found for all the particles). The orange curve indicates the spectrum measured before cooling,
which is characterized by a main resonance at ωz = 40 kHz and extra harmonics (e.g., ωz/2, 3/2ωz, 2ωz). The green (blue) curve displays
|Szz| obtained after cooling the system with a cooling power of P = 20 nW (200 nW), while the white dashed (yellow solid) line describes
its fitting by a Lorentzian model that is used to extract the system’s temperature. (d) The procedure of (a) and (b) is systematically applied to
different sets of Nscat = 5 trapped nanobeads, while varying the cooling power P. The total energy at the start (end) of the simulation Etot(t0)
(E sim

cool) is marked by blue squares (orange circles). The dotted green (dashed red) line depicts the estimator of the cooled energy Ecool of Eq. (8)
[the optimal cooled energy E opt

cool of Eq. (10) for ρw = −1].

cooling powers (orange circles, E sim
cool) together with the en-

ergy prior to cooling [blue squares, Etot(t0)]. In very good
agreement with the estimate provided in Eq. (8) (dotted green,
Ecool), we observe a nonmonotonic evolution with increasing
power. Below P ≈ 200 nW, the evolution is inversely propor-
tional to P2, indicating that the fluctuations due to the thermal
bath dominate [i.e., the second term of Eq. (8)]. On the con-
trary, above P ≈ 200 nW, a quadratic (P2) relation between
the power and the cooled energy is observed, indicating that
the transfer of momentum by the cooling field dominates [i.e.,
the first term of Eq. (8)].

In line with our previous observation in Fig. 4(c), we ex-
plain in Appendix E 2 that an optimal cooling power can be
identified, which is a function of parameters like the number
of particles, the damping rate, etc. For the system at hand, this
optimal value of the cooling laser power is located near 200
nW. An estimator for the minimal cooled energy achievable

can be obtained by optimizing Eq. (8) with respect to ‖ �Fcool‖w,
which reads

Eopt
cool = C(ρw )−2�tcool〈γ 〉dofNdofkBTenv, (10)

where, again, C = 2 for trapped and C = 1 for free parti-
cles. Assuming a perfect correlation ρw = −1, the optimal
cooled energy of Eq. (10) is shown in Fig. 4(d) as a red
dashed line, which nicely predicts a lower bound of the energy
obtained through simulations. Naturally, lower energies will
be achieved through faster sampling rates, �tcool, or weaker
couplings to the thermal bath, 〈γ 〉dof . Yet, remarkably, only
the correlation ρw depends on the parameters of the cooling
procedure (like the number of optical modes and the opti-
cal wavelength). We thus find that the value of ρw alone
characterizes the performance of the routine and how to max-
imize it. Interestingly, we show in Appendix E 2 that in the
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FIG. 5. (a)–(c) Total energies at the outset of the cooling procedure [Etot(t0), blue squares] and at its end (E sim
cool, orange circles), resulting

from the simulations of the systematic cooling of random initial configurations of circular nanobeads (r = 75 nm). The cooling light field is
characterized by a power P = 2 µW and a wavelength λ = 532 nm. The dotted green (respectively dashed red) line depicts the estimator of
the cooled energy Ecool of Eq. (8) [respectively the optimal cooled energy E opt

cool of Eq. (10)]. In (a), the number of particles, Nscat, is varied
while the number of transverse waveguide modes M = 10 is fixed and the purple crosses (E opt,sim

cool ) report cooling performed under the optimal
conditions of Eq. (10). In (b), M is varied while we set Nscat = 10. In (c), Nscat = 10 and M = 10, while we vary the number of transverse
waveguide modes Mused used to assemble the energy-shift operator QES. (d) Efficiency of the cooling of Nscat = 10 nanobeads, while varying
the damping rate, γ , and the laser power P. The green dots indicate when the cooled energy is at most half the initial energy (red crosses show
when this is not the case). The blue solid and orange dashed lines indicate the bounds provided by Eq. (11).

configuration where the momentum transfer of the cooling
field dominates in Eq. (8), Ecool evolves quadratically with
the sampling time �tcool, while Eopt

cool evolves linearly. Further-
more, for a fixed cooling power, there exists a threshold value
�tcool below which Ecool does not improve anymore. A similar
evolution with respect to the damping rate γ is also presented
in Appendix E 2.

IV. DISCUSSION

In order to connect our theoretical results to a possible
experimental realization, we discuss in the following several
questions that will be relevant to such an implementation.

A. Degrees of freedom

The first topic we address here regards how many optical
modes are required in order to achieve cooling. Quite remark-
ably, it turns out that the degrees of freedom of the cooling
wavefronts are not directly linked to the particles’ degrees of
freedom. In other words, even just a few optical modes can
be harnessed to cool multiple nanoparticles simultaneously (a
feature that should simplify an experimental implementation).

To illustrate this point, we show in Fig. 5(a) cooling sim-
ulations when the number of particles, Nscat, is varied, and
the number of transverse waveguide modes is set to M = 10.
Here, instead of Etot, we plot the ratio Etot/Nscat (indicative
of individual particles’ energies) in order to emphasize the
evolution of cooling performance with the number of parti-
cles. The blue squares represent the simulated initial energies
[Etot(t0)] and the orange circles represent the end energies
using a cooling power of 2 µW (E sim

cool) while the dotted green
line provides the corresponding estimator of Eq. (8) (Ecool).
For each value of Nscat, the cooling power is also adjusted
to reach optimal cooling conditions and the purple crosses
mark the simulated averaged end energies (Eopt,sim

cool ), while
the dashed red line provides the corresponding estimator of
Eq. (10) (Eopt

cool). Remarkably, on the one hand, for a fixed
power of P = 2 µW, Ecool/Nscat stays approximately con-
stant, irrespective of Nscat. Yet, on the other hand, the optimal
cooling energy per particle linearly increases with Nscat. In
short, the procedure can handle more nanoparticle degrees
of freedom than the degrees of freedom available in the light
field (i.e., M), but the optimal cooling performances one can
expect will progressively degrade when more particles are
added.
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We now reproduce these simulations for the case of Nscat =
10 nanoparticles and when the width of the waveguide (and
thus the number of M) is increased. The corresponding results
in Fig. 5(b) emphasize that only a small number of optical
modes is required to cool the system. Starting from M = 2 to
3, the cooled energy decreases by one order of magnitude and
does not significantly improve for higher numbers of modes.

B. Missing information

An important aspect of our procedure is the fact that it is
also very robust to a reduction of both the degree of control
exerted over the input field as well as of the information
collected in the scattered field. Such robustness is of particular
importance to apply the procedure to nanoparticles evolving
in free space (not confined in a waveguide), where the control
of the input and the collection of the output field scattered by
the particles are both intrinsically limited by the numerical
aperture of the optical setup. In order to simulate a partial
control and collection of the field, part of the scattering ma-
trix will be ignored. In Fig. 5(c) we show the cooling of an
initial random configuration made of Nscat = 10 nanoparticles
in a waveguide with M = 10 propagating modes [color code
similar to Figs. 5(a) and 5(b)]. The simulations are run while
making use of only the scattering information of a reduced
number of propagating modes (Mused). We observe that, while
cooling degrades when only the first one or two transverse
waveguide modes are used, it quickly converges to an en-
ergy similar to the one obtained when the complete S matrix
is used. This emphasizes that, in order to be efficient, the
procedure relies on only a small number of modes carrying
sufficient information to operate.

Typically, we observe that the relevant modes correspond
to the ones with the largest spatial overlap with the particles.
For example in a system with M = 40 transverse waveguide
modes probing only ∼6% of the possible incident wavefronts
were sufficient for cooling five trapped particles by three or-
ders of magnitude. Finally we also explain in Appendix F 3
that our scheme is robust to experimental measurement noise.

C. Cooling conditions

Finally we focus on the operating range of our approach,
i.e., the parameter range over which cooling remains efficient.
Using the estimator of Ecool provided in Eq. (8), we derive
in Appendix F 1 different operating bounds for the relevant
system parameters such as the laser power P or the damping
rate γ . To illustrate these bounds, we show in Fig. 5(d) a
map of the efficiency of our procedure as a function of these
two parameters. In this plot the green dots indicate when
cooling is efficient in the sense that the system’s energy is
at least reduced by 50% from its initial value (i.e., Ecool <

NdofkBTenv/4). The red crosses indicate when this condition
is not fulfilled. The boundary between the green and the red
regions indicates the operating range of our approach. In Ap-
pendix F 1 we show that estimators for these bounds can be
obtained with the following relations:

2ρ2
w

(〈γ 〉dof)2
>

NdofkBTenv

‖Fcool‖2
w

>
�t2

cool

ρ2
w

. (11)

The (averaged) estimates of the bounds on P and γ de-
duced from Eq. (11) are marked in Fig. 5(d) by the orange
dashed and blue solid lines. Physically, the orange line delim-
its the influence of momentum transfer from the light field:
when P is too strong, too much momentum is transferred to
the nanoparticles in each cooling step, and the system gains
more energy than it loses. In turn, the blue solid line describes
the impact of the coupling to the environment: when γ lies
above this line, more energy gets added by the Langevin
forces [i.e., stochastic term in Eq. (5)] than what is being
removed by the cooling force. Even though cooling remains
efficient within the operating areas, its performance degrades
the closer one gets to the operating bounds [blue and orange
lines in Fig. 5(d)].

Similar estimators can be obtained for all relevant param-
eters. For the sampling rate �tcool, we can see from Fig. 5(d)
that the procedure becomes inefficient for γ > 0.5 MHz =
1/(2�tcool ). Yet this condition is necessary, but not sufficient.
Indeed, between two consecutive measurements (at t and
t + �tcool), the modification of S must remain small. In short,
the displacement of the particles moving at mean speed v

should remain small compared to the optical wavelength λ,
or more specifically:

v�tcool < λ/4. (12)

Translating this relation to the case, where only translational
degrees of freedom contribute, leads to the following bound
in sampling time (see Appendix F 2 for details):

�tcool <
1

4

√ ∑
i miλ2

NdofkBTenv
. (13)

While throughout this paper we dealt with sampling times
in the µs range, the criterion of Eq. (13) stresses that longer
times can be expected by working with larger particles (see
Appendix F 4), a larger wavelength or a lower environmental
temperature.

V. CONCLUSION

In this work, we present a many-body cooling scheme
and explore its potential to efficiently cool dielectric particles
under realistic conditions. In particular, we show that, through
the use of the energy-shift operator, wavefront shaping can be
harnessed to cool both translational and rotational degrees of
freedom on multiple levitated objects at once. We demonstrate
that our method applies to freely moving and trapped nano-
objects alike, regardless of their geometries [42,43]. Both
on the analytical level and in simulations, we are able to
derive estimates of the cooling efficiency and to demonstrate
the existence of optimal cooling conditions. Moreover, we
quantify the existence of parameter ranges, outside of which
our scheme becomes inefficient. Finally we show that our
approach is remarkably robust to a partial measurement and
to a partial control of the asymptotic field and that it operates
efficiently on a large number of particles even when just a few
optical modes are accessible.

While earlier papers have reported moderate cooling for
two-particle systems [13–17], to the best of our knowledge,
the cooling technique discussed here represents a unique
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strategy that is able to address large sets of coupled nano-
objects in levitation at once. Implementable with current
state-of-the-art SLMs [44], we anticipate that our cooling
scheme will open the door to experimental progress in the
field of optical levitation [39]. We also expect that techniques
such as online estimation [45] can be utilized to achieve a
significant acceleration of our protocol. Purely classical at this
stage, our model could be adapted to include quantum effects
like the backaction and simulate the ground state cooling of
several particles.

In the future, we believe that our scheme could be trans-
lated into an experimental protocol to reach for the first time
the motional quantum ground state of a many-body system
and thus realize the entanglement of two or more levitated
objects [5].
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APPENDIX A: ENERGY-SHIFT RELATION

Within a given domain � of boundary ∂�, we denote
by ( �Ei, �Hi ) the solution of Maxwell’s equations provided in
Eq. (2) for a given permittivity εi and permeability μi. For
two distinct complex amplitudes ( �Ei, �Hi )i∈{1,2}, corresponding
to two distinct configurations (εi, μi )i∈{1,2}, we define the Her-
mitian form over � as

〈( �E1, �H1), ( �E2, �H2)〉∂�

= 1

2

∫
∂�

( �E∗
1 × �H2 − �H∗

1 × �E2) · d�n, (A1)

in which �n depicts the outgoing normal to the surface ∂�.
If both fields are equal, then Eq. (A1) corresponds to the
integrated time-averaged Poynting vector and disappears for
systems without loss or gain. Combining Eq. (2) with the rela-
tion �∇ · ( �A × �B) = �B · ( �∇ × �A) − �A · ( �∇ × �B), the Hermitian
form of Eq. (A1) can be recast as

〈( �E1, �H1), ( �E2, �H2)〉∂� = iω

2

∫
�

(μ2 − μ∗
1 ) �H†

1
�H2

+ (ε2 − ε∗
1 ) �E†

1
�E2 dV. (A2)

We now assume that εi and μi are real (i.e., lossless media)
and functions of a parameter θ (this parameter will later be
chosen to be the time t). Moreover, if we choose the two
configurations (εi, μi )i∈{1,2} to be close to one another, we can
make the first-order approximation,

(ε2, μ2) ≈ (ε1, μ1) + �θ (∂θε1, ∂θμ1), (A3)

FIG. 6. The blue shapes depict two rigid dielectrics of cylindrical
shape at time t = t1, which are tagged with a permittivity εi(., t1)
and whose center of mass is labeled zi(t1). The lighter shaded shape
depicts the position of the particles at a time t = t0 (permittivity
εi(., t0) and center of mass zi(t0)). Throughout the motion of the
particles, a location x inside the first dielectric at t = t0 gets displaced
to ri(x, t ) at time t .

from which we can readily deduce

( �E2, �H2) ≈ ( �E1, �H1) + �θ (∂θ �E1, ∂θ �H1). (A4)

Inserting Eqs. (A3) and (A4) into Eq. (A2), while also making
use of the fact that Eq. (A1) is Hermitian, we deduce by
comparing the coefficients of �θ that

〈( �E , �H ), (∂θ �E , ∂θ �H )〉∂� = i
ω

2

∫
�

| �E |2∂θε + | �H |2∂θμ, (A5)

in which (ε1, μ1) and ( �E1, �H1) were relabeled (ε, μ) and
( �E , �H ), respectively, and the left-hand side is obtained by
substituting (∂θ �E , ∂θ �H ) for ( �E2, �H2) in Eq. (A1).

1. Energy change

We now turn to a scattering system made of scatterers
moving as a function of time t and we substitute in Eq. (A5)
the parameter θ by the time t . For easier notation, we will
now proceed with the case of dielectric scatterers. The time-
varying medium is described by a constant permeability of
μ = μ0 and a real permittivity ε(�r, t ) that is a function of
space �r and time t . Since the system is made up of distinct
rigid scatterers, we decompose ε(�r, t ) as

ε(�r, t ) = ε0 +
∑

i

εi(�r, t ), (A6)

where εi(�r, t ) depicts the permittivity of the ith nanoparticle
relative to the background. The motion of the rigid particles
is assumed to be slow with respect to the timescale of the
light field. To illustrate the movement of a single particle,
we sketch in Fig. 6 the evolution of εi(�r, t ) for the case of
a rectangle with a center of mass �zi(t ), whose locations at two
instances of time (t0 and t) are displayed in blue and black,
respectively. Throughout the particle’s motion, a coordinate �x
in the rectangle at t0 will change into a coordinate,

�ri(�x, t ) = �zi(t ) + R[�αi(t )][�x − �zi(t0)], (A7)

at time t , where R[�αi(t )] stands for the rotation matrix for
the instantaneous Euler angles �αi(t ) of the rigid body at time
t . Assuming rigid bodies with time-constant properties, the
material derivative fulfills

0 = Dεi

Dt
= ∂tεi + (∂t �ri ) · �∇εi. (A8)
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We denote by Ii[�αi(t )] and �ji(t ) the matrix of inertia and
the angular momentum of the object, respectively. Using the
relation ∂t {R[�αi(t )]} = (I−1

i
�ji )(t ) × R[�αi(t )] (see Ref. [46]),

we derive by using Eq. (A7) that

∂t �ri = m−1
i �pi + (

I−1
i

�ji
) × (�ri − �zi ). (A9)

Combining the identity �A · ( �B × �C) = �B · ( �C × �A) with
Eqs. (A8) and (A9), we then obtain

∂tε = −
∑

i

I−1
i

�ji · [(�ri − �zi ) × �∇ε]

−
∑

i

m−1
i �pi · �∇ε. (A10)

We emphasize here that �ri − �zi corresponds to the lever used
for calculating the torque of the particles. A similar relation
can also be derived for nonconstant μ. The mean force density
exerted on an incompressible particle by a monochromatic
wave reads [47, p. 242]

�f = − 1
4 (| �E |2 �∇ε + | �H |2 �∇μ). (A11)

Combining Eqs. (A10) and (A11), the relationship of Eq. (A5)
can be recast as

〈( �E , �H ), (∂t �E , ∂t �H )〉∂�

2ωi
=

∑
i

m−1
i

�Fcool,i · �pi

+
∑

i

�τcool,i · (
I−1

i
�ji
)
, (A12)

in which �Fcool,i and �τcool,i describe the optical force and torque
applied by the cooling field on the ith particle, respectively.
Furthermore the right-hand side of Eq. (A12) can be related
to the power transferred to the particles through the cooling
field. From Newton’s second law, the total energy (defined
as Etot = Ekin + Epot) relates to the power of nonconservative
forces through the relation

∂t Etot =
∑

i

�Fcool,i · �pi

mi
+

∑
i

�τcool,i · (
I−1

i
�ji
) + Pnc. (A13)

In Eq. (A13), Pnc stands for the power of all other nonconser-
vative forces acting on the particles. Injecting Eq. (A13) into
Eq. (A12), we get the energy-shift relation

−i〈( �E , �H ), (∂t �E , ∂t �H )〉∂� = 2ω(∂t Etot − Pnc). (A14)

a. Waveguide confinement

The energy-shift relation of Eq. (A14) is now applied to the
case of dielectric scatterers moving inside a hollow waveguide
[48, p. 549], to which two semi-infinite leads are attached
on its left and right ends. The field propagates along the z
direction. The lateral boundaries are made up of a perfect
conductor at which the tangential components of the elec-
tric field and the normal components of the magnetic field
disappear. We denote by � the cross section of a hollow
waveguide lead connected to the far field and by �n the normal
vector of the surface pointing in the outgoing direction. The
waveguide supports a finite number of propagating modes,
which depends on the wavelength. The waves can be split
up into transverse magnetic (TM) and transverse electric (TE)

parts, where the magnetic and electric fields are orthogonal
to the direction of propagation, respectively. Here the product
〈( �E1, �H1), ( �E2, �H2)〉� given in Eq. (A1) is obtained by replac-
ing ∂� with � and fulfills

〈( �E1, �H1), ( �E2, �H2)〉�
= i

2ω

∫
�

μ−1
0

�ETE,†
1 ∂z �ETE

2 − μ−1
0 ∂z �ETE,†

1
�ETE

2

+ ε−1
0

�HTM,†
1 ∂z �HTM

2 − ε−1
0 ∂z �HTM,†

1
�HTM

2 dσ. (A15)

We now consider TE waves,

�ETE =
∑

i

�ηi(x, y)
(
cTE,in

i eikz,iz + cTE,out
i e−ikz,iz

)
, (A16)

with
∫
� �η †

i �η j = ωμ0

kz,i
δi, j and �ηi ⊥ �n. This normalization sets

the “Ponyting vector” of each basis function, integrated over
the lead diameter, equal to 1. With this, we can see that the
Hermitian form of Eq. (A15) is 0 if ( �E1, �H1) is incoming
while ( �E2, �H2) is outgoing (or the other way around). An
equation similar to Eq. (A16) can be readily derived for TM
waves. Thus, by combining Eq. (A15) for all leads, we can
write

〈( �E1, �H1), ( �E2, �H2)〉∂� = �c out,†
1 �c out

2 − �c in,†
1 �c in

2 , (A17)

in which the vectors �c in/out
1/2 encapsulate both the field coeffi-

cients introduced in Eq. (A16) for the TE parts and similar
ones for the TM parts of the wave for all leads. Specifically,
�c in

1/2 denotes the incoming wavefronts that are injected into the
waveguide, while �c out

1/2 labels the outgoing wavefronts that are
scattered away. Any couple of incoming/outgoing wavefronts
is connected by the scattering matrix through the relation
�c out = S�c in. Thus, Eq. (A17) can be recast as

〈( �E1, �H1), ( �E2, �H2)〉∂� = �c in,†
1 (S†

1S2 − 1)�c in
2 , (A18)

in which S1 and S2 correspond to two distinct configurations
(εi, μi )i∈{1,2} and thus two scattering organizations, respec-
tively. If these two configurations are close to one another, we
note S1 = S(t ) and S2 = S(t + �t ) ≈ S(t ) + �t∂t S(t ), while
setting �c in

2 = �c in
1 = �c in. Now, combining this expression with

Eqs. (A18) and (A14) and using the unitarity of S(t ), we get
Eq. (4),

�c in,†QES�c in = 2ω(∂t Etot − Pnc). (A19)

Note that the right side of the relation corresponds to the
change of total energy induced by the incident light field given
by �c in.

b. Free space

The energy-shift relation can also be derived for particles
evolving in free space (not confined in a waveguide). Accord-
ing to Ref. [49], the electrical field scattered into the far field
by an object of arbitrary shape reads

�E (�nr) ∼
(

μ0

ε0

)1/4[
�F in(�n)

e−ikr

r
+ �F out(�n)

eikr

r

]
, (A20)

in which �F in(�n) and �F out(�n) are vectors characterizing the
incoming and outgoing components of the field oriented in
a direction �F in/out ⊥ �n, respectively. We define the tensor
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scattering matrix for the surface integral over the unit sphere
(all directions of incoming waves)

�F out(�n) = −
∫

|�n′|=1
S(�n, �n′) �F in(−�n′) dS′. (A21)

For moving particles, the energy-shift relation reads∫
|�n′|=1

∫
|�n′′|=1

�F †
in(�n′′)QES(�n′′, �n′) �Fin(�n′) dS′′ dS′

= 2ω(∂t Etot − Pnc), (A22)

in which the energy-shift operator is now defined
as QES(�n′′, �n′) = −i

∫
|�n|=1 S†(−�n′′, �n)∂t S(�n,−�n′) dS. From

Eq. (A22), we conclude that our cooling technique can be
applied to particles experiencing 3D free-space motions (i.e.,
not confined in a waveguide).

Moreover, like in the waveguide case, we want to empha-
size that also in free space the number of modes that are
affected by the particles’ motion remains finite. Consider for
this purpose that the particles’ motion is restricted to spherical
region of radius R at the center of which we place the origin
of our coordinate system. In this case, R also sets the maximal
scattering impact parameter at which light rays can still be
deflected by the moving particles. A light ray being tangential
to this scattering domain carries the angular momentum h̄kR
(k being the field wave number). Translating this to an angular
momentum

√
l (l + 1)h̄ shows that in the basis of spherical

harmonics Ylm, characterized by the angular quantum num-
ber l , the maximum value lmax that will be relevant is given
approximately by lmax ≈ kR. This cut-off thus determines the
maximal basis size in the free-space case.

APPENDIX B: NONSPHERICAL PARTICLES

1. Stochastic motion

In Sec. II C we described the stochastic motion of nanopar-
ticles while restricting ourselves to the case of spherical
objects (i.e., without rotational degrees of freedom). Here
we describe the motion of arbitrary rigid particles in par-
tial vacuum. On top of translational degrees of freedom, we
are now describing 3D rotations. We consider particles that
are well separated spatially and whose motions interact only
through the scattering of the light field. Each particle has a
mass mi and a moment of inertia Ii,0 = Diag(Ii,1, Ii,2, Ii,3) in a
reference orientation. The positions �zi and the Euler angles
�αi set the tensor of inertia Ii(�αi ) = R(�αi )Ii,0RT (�αi ) for the
rotation matrix R(�αi ). The system’s dynamics now includes
the center-of-mass momentum �pi and angular momentum �ji,
such that the time evolution of each particle fulfills a Langevin
equation [46],(

�̇pi

�̇ji

)
= −�i(�αi )

( �pi

�ji
)

+
√

2Di(�αi )�ξi(t ) +
( �Fi

�τi

)
. (B1)

The first term in Eq. (B1) describes the friction of the sur-
rounding environment, characterized by a damping �i(�αi),
while the second term sets the diffusion of the system due
to the thermal bath. Together, both terms are responsible for
the thermodynamical coupling to the environment. The vector
�ξi describes an independent Gaussian white noise with vari-

ance 1 and the drag tensor �i relates to the diffusion tensor
through the fluctuation-dissipation relation, Di = kBTenv�iW i

for W i = (mi1 0
0 Ii

). Finally, the last term in Eq. (B1) describes

the force �F and the torque �τ applied by the cooling and
trapping fields.

2. Torque-rotation correlation

In Eq. (7) we expressed the correlation between the optical
force applied by the cooling field and the motion of a spherical
particle. Here, for nonspherical particles subject to an optical
torque, we define the weighted torque-angular velocity corre-
lation as

ρrot
w :=

∑
i
�ji · (

I−1
i �τcool,i

)
√∑

i
�ji · (

I−1
i

�ji
)√∑

i �τcool,i · (
I−1

i �τcool,i
) , (B2)

which measures the colinearity between the torque and the
instantaneous rotation of the particle. By combining the ro-
tational and translational contributions, we define the total
weighted correlation as

ρw :=
(∑

i

�p2
i m−1

i +
∑

i

�ji · (
I−1

i
�ji
))−1/2

×
(∑

i

�F 2
cool,im

−1
i +

∑
i

�τcool,i · (
I−1

i �τcool,i
))−1/2

×
(∑

i

�pi · �Fcool,im
−1
i +

∑
i

�ji · (
I−1

i �τcool,i
))

. (B3)

APPENDIX C: SIMULATIONS AND DATA ANALYSIS

The numerical code to simulate the particles’ dynamics is
written in Python with heavy usage of the library NumPy. All
simulations involve a 2D rectangular waveguide with open
leads on both sides. The scalar Helmholtz equation defining
the propagation of the light field, [� + ω2με(x, z)]ψ (x, z) =
0, is simulated in two dimensions using the library NGSolve
implementing the finite elements method [50–52]. The waveg-
uide walls impose a Dirichlet boundary condition on the wave
and perfectly matched layers absorb the outgoing waves in the
asymptotic region. We simulate the time evolution using the
Euler method, except for the trapping field, where a higher-
order Adams-Bashforth method is necessary to achieve energy
conservation. Collisions between particles among themselves
and with the waveguide walls are rare, but incorporated via
elastic collisions. The force on a rigid body with a uniform
dielectric constant is calculated by numerical integration over
the surface of the particle ∂Vi,

�Fi = 1

4
(ε − ε0)

∫
∂Vi

|ψ |2 d�n . (C1)

Rotations and torques are computed in a similar fashion.
Throughout the simulation, the optical forces are updated

every half cooling time step, �tcool/2, while gravity and the
Langevin forces get updated every �tcool/10. The scattering
matrix is measured at a rate given by the sampling time �tcool

and the time derivative is approximated by taking the finite
difference. The trapping field (incoherent to the cooling field)
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is introduced by performing a second FEM simulation at the
corresponding wavelength.

In Sec. III E the power spectral density, |Szz|, was cal-
culated using an implementation of Welch’s method in the
Python library SciPy with a flat top window. The angular
frequency ωz of the trap was identified by the highest peak
in the power spectral density. After cooling, the center-of-
mass temperatures, Teff, of the different trapped particles were
estimated through a fitting of their power spectral densities
with a Lorentzian model [41] reading

|Szz(ω)| = 2kBTeffγtot

m
[(

ω2 − ω2
z

)2 + ω2γ 2
tot

] , (C2)

in which γtot stands for the total damping rate (i.e., sum of the
environmental damping rate and the damping developed by
the cooling forces).

APPENDIX D: COMPARISON WITH COLD DAMPING

Our cooling scheme can be regarded as a many-body
generalization of cold damping, which has originally been
exploited in levitated optomechanics to cool single particles
[53]. In cold damping, the instantaneous speed of a particle
is constantly monitored. This serves to exert an optical force,
F (t ), opposed to the instantaneous speed of the object, �F (t ) =
−γ ′�v(t ), in which γ ′ is a constant damping coefficient. This
“damping-like” force leads the nanoparticle to thermalize at a
colder temperature. In our scheme, the spatial degrees of free-
dom corresponding to the multiple waveguide modes (that are
accessible through the S-matrix) serve to generate complex
light fields able to simultaneously address several objects in
parallel and to exert individual “damping-like” forces. Yet, in
contrast with single-particle “cold damping,” here our pro-
tocol tackles the total energy of the system and the forces
applied on individual objects vary throughout the procedure.
Specifically, our protocol will predominantly damp the motion
of high-energy particles while exerting only small forces on
the lower-energy ones. The situation is then reversed when
the formerly high-energy particles become the lower-energy
ones, etc. Therefore, the “damping-like” forces applied on
each particle [that we denote as �Fi(t ) for the ith object] is here
characterized by a time-varying damping rate, γ ′

i (t ) and indi-
vidual damping forces can be written as �Fi(t ) = −γ ′

i (t )�vi(t ),
in which �vi(t ) corresponds to the speed of the ith particle.
Here, due to imperfect correlations between the particle ve-
locities and the cooling forces, the cooling fields also lead
to a small increase of the diffusion coefficients Di defined
in Eq. (5) that set the magnitude of the noise acting on each
degree of freedom. Nonetheless, when the system reaches its
final configuration for each degree of freedom, the damping
rate γ ′

i (t ) settles around a constant effective damping rate.
Looking at the system of five trapped particles given in Fig. 4,
we observe that for weak cooling powers each degree of
freedom settles in a thermal equilibrium such that not only
a temperature but also also an effective damping rate can be
assigned to it in the final cooled state. By fitting a Lorentzian
[Eq. (C2)] to the power spectral density given in Fig. 4(c),
we can see that for 20 nW (200 nW) applied optical power,
the given degree of freedom gets damped with around 9 kHz

(322 kHz), while the diffusion Di increases only by ∼25%
(∼14%). As shown in Figs. 3(b) and 4(a) of [36], where
we present numerical results for the case of 200 nW applied
optical power, our cooling scheme, indeed, shows consistent
results for the variance of particle position and entropy pump-
ing, when the above damping rate (∼322 kHz) obtained for
an individual degree of freedom, is used for cold damping the
five particles involved in this simulation.

APPENDIX E: COOLING EFFICIENCY

1. Derivation of the cooled energy

The decrease in total energy reachable through our cooling
approach can be estimated analytically. Here the derivation
will be performed for the case of trapped particles but a
similar expression can be derived for freely moving objects.
For simplicity, we start with a single translational degree of
freedom, z, and approximate the trapping through a linear
restoring force. The dynamics of each particle fulfills

z̈ + γ ż + ω2
0z =

√
2kBTenvγ m−1ξ (t ) + m−1Fcool, (E1)

in which ω0 stands for the resonance frequency of the trap, γ

for the damping rate and ξ for a white noise [see Eq. (5)]. Here
we neglect the influence of gravity, which plays a marginal
role owing to the strength of the optical trap.

First, we outline the approach taken here. For systems
having reached the stationary cooled energy, Ecool, we assume
that the system is ergodic, and we make use of the fact that
the average energy shift over all realizations is zero, namely,
〈�E〉t ≈ 0. In the following, we examine the different contri-
butions to the changes in energy, before we ultimately derive
an analytic formula for the cooled energy.

a. Energy shift

We focus here on strongly underdamped systems for which
γ � ω0. In order to solve the differential relation of Eq. (E1),
we make use of its Green’s function,

G(t ) := e−γ t/2
sin

(
t
√

ω2
0 − γ 2/4

)
√

ω2
0 − γ 2/4

�(t )

= t�(t ){1 + O[(ω0t + γ /ω0)2]}, (E2)

where �(t ) stands for a Heaviside function. This allows us to
obtain the solution z(t ) as a convolution with the driving terms
[right-hand side of Eq. (E1)].

Different cooling forces are applied at each sampling time
and �tcool is assumed smaller than the timescale of the par-
ticles’ oscillations within the trap (i.e., �tcoolω0 � 1). We
start out by looking at the stochastic averaged gain over a
single time step. We identify a stochastic and a deterministic
contribution (〈�Etot〉ξ = �Esto + �Edet), which, for a particle
starting at position z0 with momentum p0, reads as follows:

�Esto := 〈(p − 〈p〉ξ )2〉ξ
2m

+ mω2
0〈(z − 〈z〉ξ )2〉ξ

2
,

�Edet := (〈p〉ξ )2 − (p0)2

2m
+ mω2

0[(〈z〉ξ )2 − (z0)2]

2
. (E3)
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In Eq. (E3), 〈·〉ξ marks the average over fluctuations imposed
by the white noise ξ . For z − 〈z〉ξ =

√
2kBTenvγ m−1G ∗ ξ ,

where G ∗ ξ is the convolution of G and ξ , the stochastic term
in Eq. (E3) reads

�Esto = kBTenvγ�tcool{1 + O[(γ /ω0 + ω0�tcool )
2]}. (E4)

We will now average over the initial conditions p0, z0 (marked
as 〈·〉p0,z0 ). Due to the fact that the stochastic-energy changes
do not depend on initial conditions, we get 〈�Esto〉p0,z0 =
�Esto. Going forward, we will make the assumptions that
the initial position z0 has mean 0 and that it is uncorre-
lated with the force and momentum, namely, 〈Fcoolz0〉p0,z0 =
〈p0z0〉p0,z0 = 0. Before looking at the deterministic term

in Eq. (E3), we note that 〈z〉ξ = z0 cos
(√

ω2
0 − γ 2/4t

) +
p0

sin(
√

ω2
0−γ 2/4t )

m
√

ω2
0−γ 2/4

+ G ∗ m−1Fcool. The deterministic energy

change averaged over all initial configurations reads

〈�Edet〉p0,z0
≈

2〈p0Fcool〉p0,z0�tcool + 〈
F 2

cool

〉
p0,z0

�t2
cool

2m
, (E5)

up to order

(ω0�tcool + γ /ω0)2M〈[M−1Fcool�tcool

+ M−1 p0 + z0ω0]2〉p0,z0 . (E6)

b. Cooled energy

We will now look at the system in a stationary state and
assume that it behaves ergodically. Thus, the stochastic mean
can be replaced by a time average 〈·〉t = 〈·〉ξ,p0,z0 . Here 〈·〉t

corresponds to the average of a physical quantity over the time
steps; i.e., for the momentum it is given by

〈p〉t := lim
N→∞

1

N + 1

N∑
n=0

p(tn) (E7)

for tn = t0 + n�tcool and t0 corresponding to the arrival time
in the cooled configuration. At this stationary state, the energy
does not change on average, and we thus have

0 = 〈�E〉t = 〈�Etot〉ξ,p0,z0
. (E8)

Combining this relation with Eqs. (E4) and (E5) and replacing
the stochastic average with the time average, we get

0 ≈2〈pFcool〉t�tcool + 〈
F 2

cool

〉
t
�t2

cool

2m

+ kBTenvγ�tcool. (E9)

We will next generalize this result to many particles with
multiple degrees of freedom and uncoupled friction coeffi-
cients. We will denote by �pi the momentum vector of the ith
particle. By assuming that the forces, momenta and positions
are uncorrelated between the particles, Eq. (E9) generalizes to

0 ≈
Nscat∑
i=1

1

2mi

(
2〈 �pi · �Fcool,i〉t�tcool + 〈 �F 2

cool,i

〉
t
�t2

cool

)

+ kBTenv

Ndof∑
i=1

γi�tcool. (E10)

To simplify Eq. (E10), we introduce the time-averaged
weighted inner product,

〈�u, �v〉w :=
〈

Nscat∑
i=1

�ui�vi

2mi

〉
t

, (E11)

with a corresponding norm ‖ · ‖w. Using Eq. (E11), we can
rewrite Eq. (E10) as

0 ≈ 2〈 �p, �Fcool〉w�tcool + ‖ �Fcool‖2
w�t2

cool

+ kBTenvNdof〈γ 〉dof�tcool, (E12)

where ‖ �Fcool‖2
w = 〈 �Fcool, �Fcool〉w and 〈·〉dof is the average over

the degrees of freedom. By Ekin
cool we denote the kinetic energy

of the system when the cooled steady state is reached. Next,
we note that in such a steady state, we have ‖ �pcool‖2

w = Ekin
cool,

and we define the time-averaged weighted force-velocity cor-
relation as

ρw := 〈�p, �Fcool〉w
‖ �p‖w‖ �Fcool‖w

. (E13)

For identical spherical particles, ρw [defined in Eq. (E13)] can
be identified as the time-averaged force-velocity correlation,

ρw :=
〈∑

i �pi · �Fcool,i
〉
t√〈∑

i �p2
i

〉
t

√〈∑
i
�F 2
cool,i

〉
t

. (E14)

With this in mind, solving Eq. (E12) leads to

Ekin
cool =

(
‖ �Fcool‖2

w�tcool + NdofkBTenv〈γ 〉dof

2‖ �Fcool‖wρw

)2

. (E15)

For freely moving particles (i.e., without optical trap),
Eq. (E15) provides the total cooled energy.

In the case of trapped particles, the potential energy contri-
bution is given through the equipartition theorem, and we get

Ecool = 2Ekin
cool. (E16)

Therefore, from Eqs. (E15) and (E16) one can readily deduce
Eq. (8).

2. Analysis of the cooled energy

The first term in the cooled energy given in Eq. (E15)
(referred to as the discretization term) shows that at some
point the momentum transfer provided by the cooling forces
becomes too strong between steps. The second term (referred
to as the fluctuation term) corresponds to the inability of the
algorithm to cool lower than the energy that gets added in each
step due to white noise fluctuations.

Next, we note that the cooled energy given in Eq. (E15)
is convex in ‖ �Fcool‖w and therefore a minimal cooled energy
exists. The optimal cooled energy reads

Eopt
cool = (ρw )−2NdofkBTenv�tcool〈γ 〉dof (E17)

and is obtained for an averaged weighted force,

‖ �Fcool‖w =
√

NdofkBTenv〈γ 〉dof

�tcool
. (E18)
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FIG. 7. (a), (b) Initial total energy (blue squares, Etot(t0 )) and
end total energy (orange circles, E sim

cool), recorded when systematically
cooling (P = 2 µW) a random configuration of circular nanobeads
(r = 75 nm and M = 10). In (a) the sampling time, �tcool, is varied
while the damping rate is fixed to γ = 6 Hz. In (b) the damping rate
is varied while the sampling time is fixed to �tcool = 1 µs. The green
dotted (red dashed) line marks the prediction given by Eq. (E15)
[Eq. (E17)], labeled as Ecool (E opt

cool).

Comparing Eqs. (E15) and (E17), we observe that, while
Ecool varies quadratically with the sampling time for a strong
enough power, Eopt

cool evolves only linearly with respect to
�tcool. This point is emphasized in Fig. 7(a), in which cool-
ing was performed for an initial random configuration of
the nanoparticles, with a fixed number of M = 10 transverse
waveguide modes and while varying �tcool. The blue squares
(orange circles) represent the initial (averaged end) energy
at the start (end) of the process that we label Etot(t0) (E sim

cool).
The green dotted and red dashed lines indicate the prediction
given by Eqs. (E15) and (E17) that are labeled as Ecool and
Eopt

cool, respectively. Owing to Ecool scaling quadratically and
Eopt

cool linearly for high �tcool, the cooled energy for a fixed
power (P = 2 µW) reaches an optimum for �tcool ≈ 0.1 µs.
For sampling times below this value, the end energy settles at a
constant value. Similarly, from Eqs. (E15) and (E17), we also
observe different scalings with respect to the mean damping
rate γ . Figure 7(b) reproduces an analysis similar to the one
made in Fig. 7(a) but in which γ is varied (same color code in
both figures). We observe that the cooled energy reaches the
optimal cooled energy for a damping rate close to ≈100 Hz
and saturates for lower values due to the application of a force
that is too strong.

3. Optimal cooling power

Due to the cooling forces scaling linearly with the power
of the incident field we can rewrite Eq. (E18) to

Popt ∝
√

kBTenv〈γ 〉dof

�tcool
. (E19)

Increasing the environmental temperature Tenv or the mean
damping rate 〈γ 〉dof result in a higher heat transfer onto the
particles, which needs to be counteracted by an increase of
the power of the cooling laser. On the other hand, decreasing
the sampling time �tcool allows the algorithm to react faster
to changes in the system and thus to counteract smaller fluc-
tuations in the system, which produces a smaller end energy
and thus requires more power. We want to emphasize here
that Eq. (E19) can be stated only generally for variables like
Tenv, 〈γ 〉dof,�tcool describing the kinetic evolution of the par-
ticles. Other variables like the particle number Nscat, shape,
scattering properties and also the geometry of the system
create in general (through the scattering of the light field) a
highly complex relation between the power of the incident
field and the forces experienced by the particles.

APPENDIX F: EXPERIMENTAL PARAMETERS

1. Power and damping

In this section we derive the bounds given in Eq. (11).
As a measure for the usefulness of our cooling protocol,
we introduce the requirement that the cooling performance
is considered effective if our procedure achieves a minimum
reduction of 50% of the system’s total energy, which reads

Ecool < NdofkBTenv/4, (F1)

where NdofkBTenv/2 corresponds to the total thermal energy
at equilibrium for a system with Ndof degrees of freedom.
Combining Eq. (F1) with Eq. (E15) and under the assumption
that ρ−2

w �tcool〈γ 〉dof � 1/2, we get

2ρ2
w

(〈γ 〉dof)2
>

NdofkBT

‖Fcool‖2
w

>
�t2

cool

ρ2
w

. (F2)

In Eq. (F2), 〈γ 〉dof corresponds to the average damping rate
over all degrees of freedom and serves to establish the op-
erating boundaries displayed in Fig. 5(d). The upper bound
is reached if the power is too weak to counteract the gain
of energy due to thermal coupling. On the other hand if the
momentum transfer in each cooling step is too strong, then
the lower condition is violated.

2. Sampling rate

In a simplified one particle model, it can be derived that the
velocity magnitude v needs to follow

v�tcool < λ/4 (F3)

so that cooling can take place. Physically, Eq. (F3) states
that the average motion of the particles between two time
measurements should remain small compared to λ such that
the corresponding modification of S can be tracked and
counteracted in time. With this in mind, we propose that
cooling requires that the root mean square of the velocity
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FIG. 8. (a) A system containing Nscat = 10 ciruclar nanobeads
with various radii r is cooled using different sampling times, �tcool.
The green dots (red crosses) indicate when the cooled energy is (is
not) at most half the initial thermal equilibrium energy. The blue
line describes the boundary provided in Eq. (F4). (b) Systems com-
posed of Nscat = 10 nanobeads are subject to different surrounding
temperatures, Tenv, and cooled using different sampling times, �tcool.
The green dots (red crosses) indicate when the cooled energy is (is
not) at most half the initial energy. The blue solid line describes
the boundary provided in Eq. (F4), while the orange dashed line
corresponds to the averaged lower boundary of Eq. (F2). In both
cases good agreements between numerics and analytical estimates
are found.

over time follows the condition described in Eq. (F3), namely,√
〈�v2

i 〉t�tcool < λ/4 for all particles i.
When the system resides in a steady state (and in absence

of a potential) the total energy reads 〈Etot〉t = 〈∑i miv
2
i /2〉t =

NdofkBTenv/2, from which we can derive the relation

�tcool <
1

4

√ ∑
i miλ2

NdofkBTenv
, (F4)

which establishes an operating criterion for the sampling time.
For instance, Fig. 8(a) displays the cooling effectiveness when
our procedure is systematically applied on different initial
configurations. Here both the radius of the particles r and
the sampling time �tcool are varied. Green dots indicate when
cooling was effective and the system energy is at least reduced
by 50%. The red crosses indicate when this condition is not
fulfilled and we observe clearly the presence of a continuous
range over which cooling operates. When the radius of the
particles is changed, so is their mass (m ∝ r3). Thus, the

FIG. 9. Time evolution of the total energy of a system composed
of 10 nanobeads (r = 75 nm), which are cooled in a waveguide of
M=20 modes and using a power of 2 µW, while noise deteriorates
the measurement of S. The continuous red, dash-dotted green, dashed
orange, and dotted blue curves correspond to noise levels character-
ized by signal-to-noise ratios of 50 000, 500, 50, and 5, respectively.

condition of Eq. (F4) can be recast to relate r and �tcool, which
is marked in Fig. 8(a) by the blue line. In Fig. 8(b) a similar
analysis is performed for Tenv and �tcool. The conditions of
Eqs. (F2) and (F4) are marked by the orange dashed and blue
solid lines, respectively, and again match nicely the simula-
tions.

3. Measurement noise and performances

To quantify the impact of noise measurement on the re-
construction of the scattering matrix, S with 2M × 2M entries
is tagged with a perturbation matrix E, whose elements are
independent (in time and from each other) complex Gaussians
with standard deviation σ . The cooling procedure will then
be applied to the noisy scattering matrix S̃ = S + E. When σ

FIG. 10. N = 4 circular beads with radius r = 750 nm evolving
in a waveguide are cooled with a sampling rate of �tcool = 1 ms,
while using a cooling laser of wavelength λ = 1500 nm allowing
for four propagating transverse modes and a power P = 40 nW. The
black solid line depicts the kinetic energy of the system, while the
orange dotted (blue dashed) line indicates the stationary energy of
the (un)cooled system.
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increases, this emulates the impact of noisy measurements on
the reconstruction of each scattering-matrix component. Such
noise is quantified through a signal-to-noise ratio (2Mσ 2)−1.
In Fig. 9 we systematically cool a set of N = 10 particles
while progressively degrading the signal-to-noise ratio. For
ratios above 104 (solid red curve), we observe final energies
equal to what one would expect for noise-free measurements.
On the other hand, lowering the signal-to-noise ratio be-
low this point (green-dotted, orange dashed and blue-dotted
curves) gradually degrades the final energy and extends the
convergence time. Nonetheless, these simulations indicate
that our scheme still operates at very low signal-to-noise ra-
tios.

The simulations displayed in Fig. 9 also serve to estimate
the total number of modes one can experimentally use in our
cooling scheme. For shot-noise-limited detectors with close-
to-one quantum efficiency, the signal-to-noise ratio evolves
like

√
I�t , in which I stands for the photon flux and �t

the measurement time. Assuming a spatial light modulator

operating at 1 GHz, in �tcool = 1 µs one can typically measure
a scattering matrix composed of 400 elements. Using a power
of 1 µW, each element of the matrix is measured within a time
step of �t = 2.5 ns with a power of 2.5 nW. Thus, one can
estimate that the measurement of each component of S will
display signal-to-noise ratio of 5, which (as reported in Fig. 9)
is sufficient to perform efficient cooling.

4. Microparticles

The operating criterion provided in Eq. (F4) emphasizes
that our cooling scheme can be implemented at sampling
times higher than 1 µs by dealing with larger particles or
higher wavelength cooling lasers. Indeed, as the mass of the
particles varies with the cube of the particle’s radius, larger
objects can be cooled with longer �tcool. For instance, in
Fig. 10 we cool a set of N = 4 silica beads of radius r =
750 nm with �tcool = 1 ms and observe the reduction of the
system’s energy by more than two orders of magnitude.
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