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Tractor beams with optimal pulling force using structured waves
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Moving objects with optical or acoustical waves are topics both of fundamental interest and of importance for
a range of practical applications. One particularly intriguing example is the tractor beam, which pulls an object
toward the wave’s source, in opposition to the wave’s momentum. In this study, we introduce a protocol that
enables the identification of wave states that produce the optimal tractor force for arbitrary objects. Our method
relies solely on the solution of a simple eigenvalue problem involving the system’s measurable scattering matrix.
Using numerical simulations, we demonstrate the efficacy of this wavefront shaping protocol for a representative
set of different targets. Moreover, we show that the diffractive nature of waves enables the possibility of a tractor
beam that works even for targets where a geometric optics approach fails to explain the pulling forces.
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I. INTRODUCTION

The widespread implementation of wave shaping tools
in optics and acoustics has allowed researchers to create
waves with a diverse set of interesting and often counterin-
tuitive properties [1–5]. These properties include propagation
through complex media [6,7] and focusing inside and behind
disordered materials [8,9], self-bending-airy beams [10], opti-
cal tweezers [11–13], and radiation pressure cooling [14,15],
to name just a few. Particularly in the field of microma-
nipulation, the controlled movement of objects has been
implemented with a remarkable level of efficiency. One par-
ticular example of this is the demonstration of a volumetric
display using acoustic trapping [16]. Another is a study in
which the authors demonstrated ultrasound beams that can
levitate and steer solid objects in the urinary bladders of live
pigs [17]. A special class of wave states that has received sig-
nificant attention in this regard are the so-called tractor beams,
which pull objects towards their source despite the wave’s
momentum being oriented in the opposite direction [18–21].

Meanwhile, these tractor beams have been studied theo-
retically and experimentally both in the acoustic and optical
domains. In the Rayleigh regime of scattering (a target much
smaller than the wavelength), studies were carried out that
identified wave states that pull particles towards their source
by carefully balancing the intensity gradient and phase gradi-
ent force [22,23]. So far, however, tractor beams for extended
objects have only been generated through numerical optimiza-
tion of the wavefront [24], heuristic design of the object and
the wavefront [25–27], by exploiting chirality [28,29], and
for certain combinations of wavelengths and target proper-
ties [30,31]. The most difficult situation is when the object
has Dirichlet boundary conditions since then waves perfectly
bounce off it. So far this has been avoided by, e.g., including
absorptive elements in the target [25]. Recently, evidence has

*michael.horodynski@gmail.com

emerged that it is not the design of the object but the opti-
mization of the incoming wavefront that is the larger lever
in light-matter interaction [32]. This is especially important
since restricting tractor beams to only a small subset of en-
gineered objects would be a considerable limitation. Thus, to
fully unlock the power of tractor beams, an operational and
practically implementable procedure is required to identify
the optimal wavefront for pulling any given object to the wave
source.

In this paper, we present such an approach that allows
us to find tailor-made optimal wavefronts providing the best
possible pulling force. Generally speaking, we compute the
applied force on a target by considering an operator that maps
the incoming wave field (typically given as a vector of modal
amplitudes) to the applied force [32,33]. This approach has the
advantage that the optimal wavefront for maximal pulling (or
pushing) is simply the eigenvector of this operator associated
with the largest (or smallest) eigenvalue of the operator. The
operator we use here is the generalized Wigner-Smith (GWS)
operator, which is introduced for optimal focusing [34] and
meanwhile is applied for micromanipulation [35,36], infor-
mation retrieval [37], and inverse design [38]. For the case
at hand, where we are interested in moving an object towards
the wave source (chosen here to coincide with the positive
x direction), this operator Qx, evaluated in an appropriately
chosen basis of in and outgoing far-field modes, satisfies the
following eigenvalue equation:

Qx|u〉 = (
K in

x − S†Kout
x S

)|u〉 = θx|u〉, (1)

where S is the system’s scattering matrix (in our case, describ-
ing the scattering off a target in free space) and K in

x (Kout
x ) is

the operator that allows for the computation of the incoming
(outgoing) wavefront’s momentum in the x direction (the di-
rection in which we want to push or pull). It is then easy to
see that Qx measures the difference between the incoming and
outgoing momentums of the wave. Due to momentum con-
servation, this difference is then applied to the target [34,39].
The advantage of using the GWS operator instead of other
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FIG. 1. Illustration of the concept. In the circular scattering re-
gion of radius R = 20λ, we place the object on which to exert pulling
forces at a distance d to the wave source. We restrict the corre-
sponding region from which we generate waves to one-quarter of the
circular boundary. Outgoing boundary conditions are implemented
by a perfectly matched layer surrounding the scattering region (not
pictured).

approaches like the optical eigenmode approach [40] is that
it only requires far-field information (the S matrix), while
the optical eigenmodes need a relation between the far field
and near field in the target plane. We can understand Eq. (1)
not only as the difference between incoming and outgoing
momenta as measured by K in

x and Kout
x , but also as an infinites-

imal shift of the scattering matrix (since Qx = −iS†∂xS) [34].
This has the consequence that Qx cannot only be evaluated by
shifting the target (to determine the derivative ∂x), but also by
shifting the spatial light modulator (SLM) or transducer array
used to shape the incoming wave (akin to the equivalence
between active and passive transformations).

II. SIMULATING STRUCTURED WAVES

To demonstrate our approach for constructing optimal
tractor beam states, we first compute a unitary scattering
matrix (for which the GWS operator is Hermitian, hence the
eigenstate corresponding to the most positive eigenvalue then
describes the input field of the optimal tractor beam). Since
procedures for how to set up this scattering matrix in an
appropriate basis (in free space) do not seem to be available
in the literature, we present a comprehensive description of
our solution in the following, with the details being available
in Appendix A and the code being published alongside this
work [41]. Restricting our analysis to two spatial dimensions,
our starting point is the scalar Helmholtz equation in polar
coordinates [� + k2ε(�r)]ψ (�r) = 0 in a circular region (see
Fig. 1), which we solve numerically using an open-source
finite-element method (NGSOLVE) [42,43]. Here � is the
Laplacian in polar coordinates, k is the wave number, ε(�r)
is the spatially varying dielectric constant, ψ (�r) is the scalar
wave, and �r = (ρ, ϕ)T is the position vector.

The fundamental solutions of the Helmholtz equation in
the radial direction are Bessel functions of the first and second
kinds. From them, we can form, by using linear combination,

the Hankel functions of the first and second kinds, represent-
ing the outgoing and incoming waves in polar coordinates.
The contribution of the angular variable ϕ is given by eimϕ ,
where m numbers the mode. The unitary scattering matrix of
the system is then computed by the following integral con-
taining the numerical solution of the Helmholtz equation (ψn)

resulting from a given input mode: Smn = ∫ 2π

0
eimϕψn

2πH (1)
m (kR)

dϕ −
H (2)

n (kR)

H (1)
n (kR)

δm,−n. The fundamental solution of the Helmholtz
equation also allows us to construct the incoming modes
of this geometry as χ in

n = einϕH (2)
n (kρ)/(

√
2π |H (2)

n (kR)|).
Equipped with this basis we compute the elements of K in

x by
[K in

x ]mn = −i
∫ 2π

0 dϕ(χ in
m )∗∂xχ

in
n and we note that Kout

x = K in
x .

In the rest of the paper, we fix the wavelength to λ = R/20,
where R is the radius of the scattering region. We also restrict
the region from which we can send waves onto the target to
a quarter of the scattering boundary (corresponding to a solid
angle of π/2) so that all incoming waves have momentum
directed opposite to the direction in which we want to pull
the target. We do this by first transforming the GWS oper-
ator from the modal basis into the eigenbasis of the angle
ϕ, which we obtain by solving the eigenvalue problem of
the corresponding operator: [φ]mn = ∫ 2π

0 dϕ(χ in
m )∗ϕχ in

n . The
eigenstates of φ are incoming waves that best approximate
a point source at some location on the boundary, while also
providing an orthogonal and complete basis. Expressing any
state in this angular eigenbasis of this operator thus gives
us the angular distribution of the state along the boundary
of the scattering region. In this basis, we then only select
contributions that lie within the allowed input aperture. We
note here that this only limits the angle in which we send
waves into the system, but we still record all scattered waves.
This procedure keeps the hermiticity of Qx such that we find
the globally optimal tractor beam for a restricted input angle.

III. DEMONSTRATION OF OPTIMAL TRACTOR BEAMS

To show the power of the presented tool, we consider a
representative set of targets: First, a dielectric triangle (re-
fractive index n = 1.44), where our calculations show that
a focus on the target’s front will execute an efficient pulling
force by drawing the target to regions with higher intensity
[see Fig. 2(a) for an illustration of the concept and Fig. 2(b)
for the intensity distribution of the optimal tractor beam].
Second, the already more challenging case of a triangle with
fully reflecting boundary conditions (“hard walls”) is consid-
ered. Here, an intuitive ray optics picture suggests that optical
pulling forces can be implemented by rays bouncing off the
slanted sides of the triangle, such that their redirection results
in a momentum transfer that pulls the target to the rays’ source
[25,44] [see Fig. 2(a) for an illustration of the concept and
Fig. 2(b) for the intensity distribution of the optimal tractor
beam, which shows an appropriate redirection of the beams].
Third, we consider the case of rectangles with hard walls
of varying widths which presents a counterintuitive scenario
in the sense that optical pulling forces cannot be understood
through ray optics. This is because all rays that are reflected
from those sides of the rectangle, which are in a line of
sight with the SLM or transducer array, can only result in
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FIG. 2. (a) Sketches of the targets used, which are a dielectric
triangle (green) and two targets with Dirichlet boundary conditions:
a triangle (blue) and a rectangle (orange). The black arrows mark the
momentum of the incoming and scattered waves and the gray arrow
is the resulting momentum transfer onto the target. Both the width
of the triangles as well as their height measure 2λ. The height of the
rectangle is equal to 1λ and the width is 2λ. The incoming waves
impinge onto the targets from the right (yellow arrow). (b) Intensity
distribution of the optimal tractor beam for the dielectric triangle
(left) and the triangle with hard walls (right) at a distance of d = 20λ

to the source. (c) The pulling force resulting from the optimal wave
state for each distance over the distance from the source for the
targets depicted in (a): The dotted green line denotes the dielectric
triangle, the solid blue line the triangle, and the dash-dotted orange
line the rectangle. Additionally, we also consider a rectangle with a
width of 12λ (dashed violet line). The inset details the results at large
distances from the source (marked by the dashed black line).

pushing the rectangle away or in causing lateral displacement.
Nevertheless, leveraging the full interferometric nature, e.g.,
of electromagnetic or acoustic waves, our approach still finds
the incoming state that exerts the maximal pulling force by an
appropriate redirection of the incoming wave through diffrac-
tion at the rectangle’s corners [see Fig. 2(a) for the illustration
and Fig. 1 for the intensity distribution which showcases the
redirection of the wave].

To elucidate this behavior, we first look at the force act-
ing on every point along the boundary of the rectangle, i.e.,

�F ∝ |∂�̂nψ (�c)|2, where �c parameterizes the boundary [35].
Figure 3(a) clearly shows that the majority of the force is
applied very close to the rectangle’s corners, suggesting that
diffraction at these corners is responsible for the emergence of
optical pulling forces. To further corroborate this statement,
we show in Fig. 3(b) the strength of the optical pulling force
as a function of how much we round the sharp corners of a
rectangle. We discover that, at short distances to the source,
rectangles with a large rounding radius allow for a stronger
pulling force than rectangles with sharp corners, while for
long distances this effect is reversed, i.e., sharp corners allow
the largest pulling forces. We attribute this behavior to the
ease with which waves can focus at short distances at the
corners’ backside allowing us to employ the intuitive picture
of specularly reflected rays at the corners on the distal end
of the rectangle, instead of a more complicated wave-based
explanation relying on diffraction. For longer distances, such
a focus is harder to achieve and in this case, the pulling force
is induced by wave diffraction, which is more pronounced at
the sharp corners of the rectangle’s corners.

In Fig. 2(c) we show the maximal pulling force for all of
the individual targets, evaluated at different distances to the
origin. The depicted simulation results confirm our intuition
from above in the sense that the pulling force for the dielectric
target decays the slowest with increasing distance. For the
targets with hard walls, the slowest decay is observed for the
triangle, while the wider rectangle shows the fastest decay,
demonstrating at the same time that a narrowing numerical
aperture is detrimental to the strength of optical pulling forces.

IV. STATIC TRACTOR BEAMS

So far we discussed tractor beams optimized for each
distance of the object to the source individually. Thus, to
pull a target closer to the source, the incoming wave has to
continuously change. This is akin to optical conveyor beams,
which cannot only trap an object but also pull them in by
changing the phase of the beam [45]. In the following, we also
demonstrate that wavefront shaping allows for the creation
of a “static” tractor beam, which exerts a pulling force on
the target irrespective of its current distance from the source.
This static tractor beam only requires a single unchanging
pattern on the SLM. We find this wavefront by considering
the eigenstates of the following operator:

Qcont
x =

dmax∑
dmin

1

θmax(di )
Qx(di ), (2)

which is the sum of all GWS operators, spaced by some dis-
tance along the way, weighted with their maximal eigenvalues
(i.e., the one that indicates the maximal strength of the pulling
force). By dmin (dmax) we denote the minimal (maximal) dis-
tance to the source we consider. We also note here that the
distance between the points in space at which two adjacent
GWS operators are evaluated is evenly spaced. The weighted
sum is used because otherwise, the GWS operators at short
distances would dominate since at short distances the applied
pushing and pulling forces are much stronger [see Fig. 2(c)].
In Fig. 4 we show the performance of the static tractor beam
found by solving the eigenvalue problem of Qcont

x . We see that
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FIG. 3. Diffraction forces on a rectangle. (a) Distribution of the pulling force around the rectangle with Dirichlet boundary conditions at a
distance of d = 8λ to the source. (1) and (3) are the sides orthogonal to the pulling direction while (2) is facing towards and (4) is facing away
from the source. The force, mainly located on the corners of side (4), is stronger there, resulting in a tractor beam. (b) Pulling force depending
on the rounding radius for different distances from the source. The pulling force is normalized for each distance separately by its value at a
rounding radius of zero.

with this protocol it is indeed possible to construct a static
tractor beam for different targets (such as for the triangle and
rectangle with hard walls as well as for the dielectric triangle).
We note that the potential created by the static tractor beam
can feature shallow local minima, in which that target could
get trapped. However, in the case of the rectangle, if it starts
at an appropriate distance it can garner enough energy to just
roll over such a potential well.

We also compare different dmax to investigate how the per-
formance of a static tractor beam is affected by the maximal
distance we demand from it. Our simulations uncover that,
depending on which target we consider, there is a different
maximal distance for which our protocol finds a static tractor
beam. The best performance is found when considering the
dielectric triangle and the worst is when considering the trian-
gle with hard walls. This result is surprising since the triangle
with hard walls exhibits a greater range at which it is possible
to engineer a tractor beam state compared to the rectangle [see
Fig. 2(c)].

We note here that Eq. (2) is not the only choice to find
a static tractor beam and we, therefore, try two alternatives,
which, however, do not surpass the presented method in
their performance: The first is to replace the division by
the extremal eigenvalue with a division by the trace of Qx,
which would then give the optimal state for this particular
weighted sum. The second is formulating a (constrained)
numerical optimization problem and solving it with an ap-
propriate numerical library. This gives us greater freedom in
fixing the properties of the wave state at the prize that the

optimization problem will be nonconvex (because Qx is not
positive-definite) and thus the solution will not be guaranteed
to converge to the global optimum [46].

V. CONCLUSION

To conclude, we demonstrate a protocol that finds for arbi-
trary objects a wavefront that exerts the optimal pulling force.
We also uncover the mechanisms responsible for the transfer
of the tractor force and show in which way they depend on
the shape of the target. Furthermore, we propose a scheme for
a static tractor beam, i.e., a wave state resulting from an un-
changing SLM pattern that exerts a pulling force onto the tar-
get, irrespective of the target’s distance from the wave source.

An interesting open question building on the insights pre-
sented here is the concurrent optimization of the wavefront
and of the object’s shape. Our approach would be ideally
suited to investigate this since it provides both the optimal
wavefront as well as the gradient of the cost function with
respect to changes in the geometry [38]. This approach could
be used, e.g., to find structures that cannot be pulled at all.
Furthermore, an extension of the proposed approach to three-
dimensional vectorial waves should be straightforward.
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FIG. 4. Performance of a static tractor beam for different maximal distances of the object. Depicted is the potential as a function of the
distance d . In all cases, dmin = 2λ and the distance between two evaluation points of Qx is λ/2, i.e., di+1 − di = λ/2. The insets enlarge the
area marked by the dashed rectangle and show local minima of the potential in which targets could get stuck.
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APPENDIX A: DETAILS OF THE NUMERICAL
IMPLEMENTATION

Here, we show how to construct a unitary scattering matrix
for an open system with a circular boundary in the framework
of the finite-element tool NGSOLVE [42,43]. Our starting point
is the most general solution of the Helmholtz equation in polar
coordinates containing propagating waves

ψ =
∑
n∈Z

[
αnH (2)

n (kρ) + βnH (1)
n (kρ)

]
(γneinϕ + δne−inϕ ),

(A1)

where outgoing and incoming waves are represented by the
Hankel functions of the first and second kinds (H (1)

n and H (2)
n ),

respectively, since

Re
[−iH (1,2)

n
∗
(kρ)∂ρH (1,2)

n (kρ)
] = ± 2

πρ
∀n, ∀kρ, (A2)

where Re denotes taking the real part and we note here that
the radial flux is independent of n. This immediately gives us
a complete and orthonormal basis on which we can construct
the scattering matrix. The only remaining task is then to get
every constant prefactor in the numerical implementation and
computation of the S matrix exactly right to have a flux-
conserving and thus unitary S matrix, as well as an S matrix
that respects transposition symmetry.

The first aspect of this task is to carefully look at the source
term ( f , which we have omitted so far) in the Helmholtz
equation

[� + k2ε(�r)]ψ (�r) = − f (�r). (A3)

In the concrete implementation of this work f is located
along the circular boundary of the scattering region, i.e.,
f (ρ, ϕ) = δ(ρ − R)h(ϕ) = δ(ρ − R)

∑
n cneinϕ , where cn are

the entries of a vector of modal amplitudes that describes the
incoming wave. We now want to fix cn to get excitations of the
form

ψI =
∑

n

anH (2)
n (kρ)einϕ for ρ < R, (A4)

ψO =
∑

n

bnH (1)
n (kρ)einϕ for ρ > R, (A5)

where ψI and ψO represent waves inside and outside the
circular boundary that both propagate away from the source.
We choose this particular form of ψI to have an isotropic
source when considering |ψI |. By demanding that ψI (R) =
ψO(R) (continuity of the solution) we find that anH (2)

n (kR) =
bnH (1)

n (kR). To connect an and bn to cn we then plug our
particular form of the source into the (vacuum) Helmholtz
equation multiply it by e−imϕ and integrate from R − ε to
R + ε (ε being a small number, which we later take to zero)
and from 0 to 2π . This results in cn = −4ian/[πRH (1)

n (kR)],
which is central to the computation of a unitary scattering
matrix since, for a numerical solution of Eq. (A3) we get
excitations of the form (A4). There is also a second conse-
quence of the formula connecting the an’s and cn’s: It imposes
a (heuristic) cutoff for the number of modes since Hankel
functions of constant kR but increasing n increase in absolute
value, such that for some n, cn is effectively zero.

Equipped with the necessary knowledge of the source’s
exact form, we can obtain a unitary S matrix from a numeri-
cal solution of the Helmholtz equation (ψn) for an incoming
cylindrical wave with amplitude one in mode n:

Smn =
∫ 2π

0

eimϕψn

2πH (1)
m (kR)

dϕ − H (2)
n (kR)

H (1)
n (kR)

δm,−n. (A6)

In the above formula, we project ψn onto eimϕ since the out-
going channels are time-reversed incoming channels, i.e., the
complex conjugate of the incoming mode [33]. To correctly
project onto the outgoing channels (e−imϕ) we then need to
complex conjugate a second time. The factor in front of the
integral in Eq. (A6) is placed to ensure the correct normaliza-
tion in both phase and amplitude for each element of S. It is,
however, not a flux normalization factor since every mode we
consider carries the same flux [see Eq. (A2)]. In other words,
the weighing of different fluxes for different modes is not
necessary. To avoid including the incoming radiation in the
computation of S, we must also subtract from each element
of the antidiagonal (which are the elements of Smn for which
m = −n) the term H (2)

n (kR)/H (1)
m (kR).

In Fig. 5 we plot a system of randomly placed scatter-
ers and its associated scattering matrix. We see that S is
unitary (since there is neither loss nor gain present) and

FIG. 5. Properties of the S matrix. (a) Spatial intensity distribution of an incoming field in the fundamental mode (n = 0) in a geometry
consisting of 20 randomly placed Teflon scatterers (ε = 2.0736) with radius 0.33λ. The radius of the scattering region is R = 4λ, which
corresponds to 39 modes. (b) Absolute value of the scattering matrix entries for the system depicted in (a). (c) Absolute value of the deviation
from unitarity (S†S − 1). (d) Absolute value of the deviation from transposition symmetry (ST − S).
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FIG. 6. Decomposition of the optimal optical pulling force F into the conservative, Fg (equivalent to the gradient force), and nonconserva-
tive, Fk (equivalent to the scattering force in the absence of absorption), parts over the distance from the source for the targets considered in
Fig. 2.

transposition symmetric up to the numerical error. These
are the fundamental symmetries of a scattering matrix [3],
indicating that our computation is correct. Figure 5(b) also
shows that, for some incoming modes, the nonzero elements
of S are located on the antidiagonal. We also note that, when
the system is empty, all nonzero elements of S are located
on the antidiagonal (not shown). This can be attributed to
the fact that in an empty system, the solution is given by
ψn = [H (1)

n (kρ) + H (2)
n (kρ)]einϕ = 2Jn(kρ)einϕ , which can-

not be expressed as the sum of the incoming and outgoing
modes, as doing so would violate the conservation of angular
momentum.

Lastly, we also discuss the form of the basis state from
which we can compute any operator, like φ and Kx. Since the
incoming waves are represented by einϕH (2)

n (kρ), the incom-
ing modes are given by

χ in
n = einϕH (2)

n (kρ)√
2π

∣∣H (2)
n (kR)

∣∣ , (A7)

where the terms in the denominator are necessary to have
orthonormal modes at ρ = R.

After computing the elements of K in
x using χ in

n and in
turn constructing the GWS operator with them, there is also

secondary use for them: When we compute the S-matrix for
an arbitrary object at an arbitrary position x within the system
we can calculate the scattering matrix at a position shifted by
�x by considering [34]

S(x + �x) = e−iKout
x �xS(x)eiK in

x �x. (A8)

APPENDIX B: ANALYSIS OF THE FORCE

The optical forces discussed in the main text can be de-
composed (as every vector field can be) into a conservative (g)
and nonconservative (k) part, i.e., �F (�r) = �Fg(�r) + �Fk (�r), with
∇ × �Fg(�r) = 0 and ∇ · �Fk (�r) = 0. The conservative part is
also called the gradient force, while the nonconservative part
is also called the scattering force (in the absence of losses, i.e.,
no absorption forces occur). We perform this decomposition
by employing the method discussed in Ref. [47], which uses
the Fourier transformed field �F (�r).

In Fig. 6, we plot the contribution of the conservative and
nonconservative parts to the force curves depicted in Fig. 2(c).
We see that the pulling force comes predominantly from �Fg,
while �Fk contributes to the pulling effect only at short dis-
tances to the source.
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