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A coherent perfect absorber exploits the interferometric nature of light to deposit all of a light field’s
incident energy into an otherwise weakly absorbing sample. The downside of this concept is that the
necessary destructive interference in coherent perfect absorbers gets easily destroyed both by spectrally or
spatially detuning the incoming light field. Each of these two limitations has recently been overcome by
insights from exceptional-point physics and by using a degenerate cavity, respectively. Here, we show how
these two concepts can be combined into a new type of cavity design, which allows broadband exceptional-
point absorption of arbitrary wavefronts. We present two possible implementations of such a massively
degenerate exceptional-point absorber and compare analytical results with numerical simulations.
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Introduction—While thin films or layers can only absorb
a certain percentage of the light that shines through them
in a single pass, an enhancement of absorption can be
reached when the light beam has multiple passes through
the absorbing material. This insight already indicates that
placing an absorber in a cavity, where light bounces back
and forth, can enhance the degree of absorption consid-
erably [see Fig. 1(a) as an example]. The interferometric
nature of light propagation in a cavity can boost the
absorption even further—up to the point, where all
the incoming light gets perfectly absorbed. In the single-
mode case this phenomenon is known as “critical coupling”
[1–5]. For multiple modes one speaks of “coherent
perfect absorption,” an effect that can also be interfero-
metrically controlled through the relative phases of the
incoming modes [6–13]. Conventional perfect absorbers
have been widely explored in diverse platforms and
applications, encompassing complex structures and disor-
dered media [14–18], single-port interferometers [19,20],
optical switches [21,22], sensors [23,24], and all-optical
transistors and logic gates [25,26]. Recently, two of the
major challenges of coherent perfect absorbers (CPAs) have
been successfully addressed:
The first challenge is a CPA’s narrow bandwidth,

with slight frequency shifts disrupting the resonant absorp-
tion, typically resulting in a Lorentzian absorption profile.
Research on how to make CPAs more broadband encom-
passes a wide array of approaches, such as metasurfaces
[27–29], plasmonic effects [30–32], metallic nanoparticles
metasurfaces [33], thin films [34], and broadband photonic

crystal nanobeam resonators [35]. Recently, insights from
exceptional point (EP) physics have also been used for
advancing this goal [11–13]: at an EP, two (or more)
discrete eigenvalues and eigenstates of a non-Hermitian
system merge. Such an EP-CPA can be observed when two
(or more) cavities with spectrally overlapping resonances
are critically coupled, as depicted in Fig. 1(b). Specifically,
it is possible to select system parameters such that both
the critical-coupling condition, necessary for perfect
absorption, and the EP condition coincide at the same real
input frequency [11]. The result is a spectral degeneracy
that leads to a significantly broadened (quartic) absorption
spectrum [12,13], in analogy to the physics of white-
light cavities [36–41] and of multimirror Fabry-Pérot
interferometers [42].
The second major challenge concerns the limitation that

a CPA typically only works for a well-defined input
wavefront or mode. Detuning this input mode, e.g., in
its incoming angle or phase profile, destroys the delicate
interference necessary to achieve perfect absorption. To
overcome this restriction, a massively degenerate (MAD)
cavity turns out to be ideally suited [43], as illustrated
in Fig. 1(c). In such a cavity, every incident light field is
always imaged onto itself after each round-trip. This
configuration thus enables the necessary interferometric
CPA effect for any given spatial mode.
The question we explore here is whether these two

distinct concepts can be integrated into a single CPA design
that simultaneously achieves spectral and spatial degen-
eracy. Our approach to this new cavity design is based
on the following considerations: a conventional CPA, as
depicted in Fig. 1(a), can be transformed into a spectrally
degenerate CPA by critically coupling it to another cavity,
as illustrated in Fig. 1(b). Similarly, the same conventional
CPA can be transformed into a spatially degenerate CPA by
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incorporating two lenses (focal length f) in a telescopic
configuration (of length 4f), as illustrated in Fig. 1(c).
Thus, merging these two ideas by critically coupling two
spatially degenerate cavities, as illustrated in Fig. 1(d),
should result in a CPA that is both spatially and spectrally
degenerate.
Spatial and spectral degeneracy—To derive the reflec-

tion behavior of light incident from the left on this MAD-
EP-CPA we employ a scalar optics model for polarized
light, considering a large, yet finite, number of spatial
modes. Let R1, R2, and Rc represent the reflection
matrices, and T1, T2, and Tc the transmission matrices
for the left, right, and central mirror, respectively.
Additionally, Ta is the transmission through the absorber
and T4f represents the transmission matrix for propagation
through a 4f system, comprising two lenses in a telescopic
configuration (without mirrors or absorbers). T4f acts
as a double Fourier transform producing a spatially flipped
image and a phase shift eiϕ that is the same for all modes.
Using that the same reflection and transmission coefficients
apply to all modes at the mirrors and the absorber,
all matrices except T4f become diagonal matrices, e.g.,
R1 ¼ r11, T1 ¼ t11, etc. Using a transfer matrix approach,
we can construct from these individual transmission matri-

ces the sought-after reflection matrix RðAÞ
CPA for the entire

MAD-EP-CPA [ [44], S1] [Design A in Fig. 1(d)],

RðAÞ
CPA ¼ t2aT4

4f þ rcð1þ r1t2aÞT2
4f þ r11

r1t2aT4
4f þ rcðr1 þ t2aÞT2

4f þ 1
: ð1Þ

The matrix T2
4f in Eq. (1) results in a quadruple Fourier

transformation with a uniform phase shift e2iϕ for all modes
and can thus be represented as a simple diagonal matrix

T2
4f ¼ e2iϕ1. Analogously, T4

4f ¼ e4iϕ1, turning RðAÞ
CPA into

a diagonal matrix with identical entries rCPAðωÞ along the
diagonal. Therefore, Eq. (1) can be reduced to a simple
scalar equation, which proves that all modes are subject to
the same reflection behavior in the system (spatial degen-
eracy). The function rCPAðωÞ is determined by the power
reflectivities R1 ¼ jr1j2, Rc ¼ jrcj2 of the mirrors, and by
the absorber’s one-way transmissivity Ta ¼ jtaj2. To deter-
mine the conditions for spectral degeneracy, i.e., for the EP
to occur at a real frequency, the values R1, Rc, and Ta need
to be adjusted such that the two solutions ω1, ω2 of the
equation rCPAðωÞ ¼ 0 merge into a single real-valued
frequency ω. These conditions are

R1 ¼ T2
a and Rc ¼

4R1

ð1þ R1Þ2
: ð2Þ

A detailed derivation is available in the Supplemental
Material [ [44], S1–S3]. The result (2) shows that the relation-
ship between Ta and R1 for a MAD-EP-CPA is identical to
that of a single-cavity MAD-CPA [43]: the higher the
reflectivity R1 of the input-coupling mirror, the weaker
the internal absorber needs to be. Additionally, the relation
between Rc and R1 indicates that Rc quickly approaches
values near 1 with increasing values of R1, indicating weak
coupling between the left and right subcavity.

FIG. 1. (a) A conventional CPA (critically coupled cavity). When the critical-coupling condition R1 ¼ T2
a is met, the incident coherent

light field is perfectly absorbed, but only for a single plane-wave input mode at the right frequency. (b) A spectrally degenerate EP-CPA,
consisting of two weakly coupled conventional CPAs. When the critical-coupling conditions Rc ¼ 4R1=ð1þ R1Þ2 and R1 ¼ T2

a are met,
the (generally distinct) resonance points merge at a single, real frequency. This spectral degeneracy results in a broadened (quartic)
absorption spectrum (not shown). (c) A MAD-CPA is a spatially degenerate extension of the conventional CPA: because of the self-
imaging telescopic lens arrangement, any incoming spatial mode is mapped onto itself after each round-trip, leading to perfect
cancellation of any back-reflected light at the front mirror. (d) The MAD-EP-CPA (“Design A”) combines the features of spatial and
spectral degeneracies for improved spatial and spectral acceptance.
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Numerical simulations—To corroborate that these ana-
lytical results are, indeed, applicable to the multimode
MAD-EP-CPA, and to assess the impact of deviations in
certain system parameters (such as minor misalignments of
the mirrors), we conducted detailed numerical simulations.
In these simulations, light propagation through and reflec-
tion from each optical element, as well as the propagation
between optical elements, were realistically simulated
using scalar Fourier wave optics methods, as described,
e.g., in [49–51]. Based on these simulations, reflection and
transmission matrices were calculated for each element.
These matrices were then used to construct the correspond-
ing scattering and transfer matrices. Finally, a transfer
matrix approach was employed to simulate the complex
behavior of the coupled cavities forming the CPAs. As
incident field directly adjacent to the outer surface of the
input coupling lens R1, we used a random speckle field
[Fig. 2(a)] generated by 5000 Fourier modes with equal
amplitude and random phase, with k-vector angles uni-
formly and randomly distributed between 0° and 2°. The
intensity profile of the reflected field is also taken at that
position. A discussion of all basic simulation parameters

can be found in Sec. S4 of the Supplemental Material [44].
Without compensating for the refractive index of the
absorber (assumed to be nr ¼ 1.5 with a thickness of
d ¼ 0.6 mm), our numerical simulation shows that the
minimal field-of-view reflectivity does not drop below 66%
with the given parameters [see Fig. 2(c)]. To address
this, we adjusted the focal length of the rightmost lens
in Fig. 1(d) to f0 ¼ f − dðnr − 1=nrÞ=2. This adjustment
compensates for the increased optical path length caused
by the absorber and preserves identical optical path lengths
in both the left and right subcavity. As shown in the
numerically calculated reflection spectrum of Fig. 2(b)
(blue line), this correction restores perfect absorption at the
point of degeneracy and verifies the successful operation
of our MAD-EP-CPA cavity design [see the broad yellow
line in Fig. 2(b) for comparison with an ideal quartic
absorption line shape]. For a more detailed explanation of
this refraction compensation technique, readers are referred
to the Supplemental Material [ [44], S9]. Another potential
strategy to minimize refractive aberrations is to use an
absorber with a refractive index whose real part is as close
to 1 as possible [52].
The numerical simulations also allow us to study the

impact of small deviations from optimal system parameters,
and help to pinpoint the critical system parameters influ-
encing the system performance. For instance, the simu-
lations demonstrate that the system exhibits robustness
to deviations of the optimal reflectivity R1 of the input
coupling mirror (to within about �5%), or of the optimal
transmissivity Ta of the absorber (to within about �2%). In
contrast, deviations in the reflectivity Rc of the central
coupling mirror from its optimal value significantly affect
the system performance. Even a mere 1% deviation from
the optimal value results in a minimum reflectivity of
approximately 5%, significantly diminishing the system’s
absorption efficiency (further details can be found in the
Supplemental Material [ [44], S4]). As expected, the
precise parallel alignment of the mirrors is also crucial,
particularly for the central coupling mirror, as shown in
Fig. 3. Further information on crucial parameters, like
the effects of minor variations in the alignment of the
two cavity lengths, can be found in the Supplemental
Material [[44], S4]. This section also examines the
impact of residual reflections from lenses by simulating
commercially available lenses with 633 nm V coating. Our
simulations indicate that, with such lenses, the MAD-EP-
CPA maintains a minimum power reflectivity of 0.5%,
and the characteristic broadening of the reflection spectrum
remains evident.
Considerations for larger k-vector angles—

Computational constraints restrict the k-vector angles in
our simulations to a range of 0° to 2°. Our analysis suggests,
however, that our design remains effective even for
significantly larger angles: assuming the use of aspherical,
perfect lenses, equal optical path lengths for all round-trip

FIG. 2. Numerical simulation of the proposed MAD-EP-CPA,
as depicted in Fig. 1(d). (a) Intensity pattern of a simulated
complex incident random speckle field directly adjacent to the
outer surface of R1, composed of 5000 modes. (b) Reflection
spectrum across the entire field of view with compensation of the
refraction aberrations caused by the absorber with thickness
0.6 mm (blue line). For reference, ideal quartic behavior is shown
with a thick yellow line, and a conventional CPA with the same
absorber with a black dotted line. (c) Reflected field intensity
pattern taken directly adjacent to the outer surface of R1 at the
resonance point when the refraction in the absorber is not
compensated. (d) Reflected field intensity pattern at the reso-
nance point with refraction compensated. (Simulation parame-
ters: R1 ¼ 0.7, Rc ¼ 0.968 86. Ta ¼

ffiffiffiffiffiffi
0.7

p
, wavelength: around

the resonance point near λ ¼ 633 nm, focal length f ¼ 25 mm).
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trajectories are maintained for all k-vector angles. The only
conceptual limitation then arises from our mechanism for
compensating refraction aberrations in the absorber, as
described in the Supplemental Material [ [44], S9]. Because
of the paraxial approximation used, this method becomes
less effective for angles ≳10°, necessitating a more refined
compensation mechanism.
Higher order MAD-EP-CPAs—We have also studied

MAD-EP-CPA systems encompassing more than two
coupled cavities, as detailed in the Supplemental Material
[[44], S6]. Interestingly, constructing an EP-CPA with
an increasing number of cavities results in a reflection
spectrum around the resonance frequencies akin to a
Butterworth bandpass filter, a concept from electrical
filter theory [53,54]. This observation is consistent with
the established understanding that, as outlined in [42], the
Butterworth function also characterizes the transmission
behavior of a multimirror Fabry-Pérot interferometer in the
absence of a dissipative element.
Alternative implementation—The initial design for a

MAD-EP-CPA (“Design A”), as discussed thus far and
illustrated in Fig. 1(d), is probably the most obvious solution
for merging the concepts shown in Figs. 1(b) and 1(c).
However, Design A poses challenges in the implemen-

tation, as it involves weakly coupling two plane-parallel
cavities with altogether four embedded lenses. We thus
propose in Fig. 4(a) an alternative “Design B,” involving a
coupling mirror with reflectivity Rc at the center of a single
4f cavity, requiring only two lenses. This simplification
requires a division of the left mirror at the optical axis into
an input-coupling segment with reflectivity R1a < 1 and a
fully reflective mirror R1b ¼ 1. The weak absorber is
then placed adjacent to the totally reflective mirror R1b.
Additionally, to mitigate the additional refraction intro-
duced by the absorber, we adjust the focal length of the
left lens to f0 ¼ f − dðnr − 1=nrÞ=2 (see Supplemental
Material [ [44], S9]). Furthermore, to ensure an identical

optical path length above and below the optical axis, we
have incorporated a transparent slab, designated T1, having
the same thickness and refractive index as the absorber,
adjacent to mirror R1b. Design B can be seen as a “folded-
up” variant of Design A by identifying analogous round-
trip paths. For instance, in Design A, light undergoes
self-imaging round-trips within the right subcavity, with a
corresponding path in Design B from the bottom left to the
top right. A similar parallel can be observed for round-trips
in Design A’s left subcavity, corresponding with the path
from top left to bottom right in Design B. In both of these
scenarios, a single reflection at Design A’s central mirror
is substituted by two transmissions through Design B’s
central mirror. Also, for the third round-trip path in Design
A, where light propagates between the farthest mirrors R1

and R2, an analog round-trip path can be identified in
Design B (see Supplemental Material [ [44], S8] for
details). However, it is crucial to recognize that such
comparisons between Design A and Design B offer, at
best, a qualitative analogy. A comprehensive comparison
requires a sound mathematical analysis, considering the

FIG. 4. Alternative MAD-EP-CPA configuration (“Design B”).
(a) Rather than coupling two 4f cavities as in Design A, a
coupling mirror (Rc) is positioned at the center of a single 4f
cavity. The left mirror is divided into an input-coupling part (R1a)
illustrated above the optical axis, and a completely reflecting
mirror (R1b) depicted below the optical axis. The absorber with
transmissivity Ta is placed next to mirror R1b. To correct for
refraction aberrations, the left len’s focal length is adjusted to f0,
and a transparent slab T1, matching Ta in thickness and real value
of refractive index, is placed near R1a. Exemplary beam paths are
marked in red and blue above and below the optical axis.
(b) Numerical simulation of the field-of-view reflection spectrum
(blue line) in comparison to an ideal quartic behavior (broad
yellow line). (c) Incident field intensity pattern directly adjacent
to the outer surface of R1a, consisting of 5000 random modes.
(d) Reflected field intensity pattern adjacent to the outer surface
of R1a, demonstrating perfect absorption.

FIG. 3. Sensitivity to misalignment of the central coupling
mirror (same simulation parameters as in Fig. 2). Left: reflection
spectrum across the entire field of view when the center mirror is
slightly tilted out of the vertical alignment. Right: reflected field
intensity pattern taken directly adjacent to the outer surface of R1

when the central mirror is tilted by 0.0005°. Perfect absorption
now only occurs in a narrow horizontal area along the tilt axis.
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infinite sum of all possible round-trips and the effects of
coupling between the two subcavities. Nonetheless, this
qualitative comparison hints that the condition for the
transmissivity Tc of the central mirror in Design B may
resemble the condition for the reflectivity Rc of the central
mirror in Design A. Using an analogous derivation method

as before, the following matrix equation for RðBÞ
CPA can be

established:

RðBÞ
CPA ¼ t2aT8

2f þ ð1þ r1at2a − aÞT4
2f þ r1a1

r1at2aT8
2f þ ðr1a þ t2a − aÞT4

2f þ 1
; ð3Þ

with the scalar value a ¼ r2cðt2a þ 1Þðr21a þ 1Þ. Observe how
the structure of Eq. (3) resembles the structure of Eq. (1).
Because T4

2f ¼ T2
4f , the matrix T4

2f in Eq. (3) results
in a quadruple Fourier transformation with a uniform
phase shift e2iϕ for all modes, and can thus be represented
as a simple diagonal matrix T2

4f ¼ e2iϕ1. Analogously,

T8
2f ¼ e4iϕ1. Consequently, RðBÞ

CPA becomes a diagonal
matrix and can be reduced to a simple scalar equation,
which proves the spatial degeneracy of Design B. The
spectral degeneracy condition can be met when the
following EP conditions are fulfilled (see Supplemental
Material [ [44], S7]):

R1a ¼ T2
a ð4Þ

Rc ¼
�
1 − Ta

1þ Ta

�
2

⇒ Tc ¼
4Ta

ð1þ TaÞ2
: ð5Þ

Note the similarity between Eqs. (4), (5), and (2). While the
central mirror in Design A must exhibit high reflectivity at
the exceptional point (EP), in Design B it requires high
transmissivity, which is in accordance with our earlier
qualitative analysis. The analytical results confirm the
anticipated quartic behavior and have been corroborated
by numerical computer simulations, as illustrated in Fig. 4.
Conclusions—We have introduced two CPA designs that

combine spectral and spatial degeneracy. Through ana-
lytical and numerical models, we have validated the
feasibility of this concept and explored its limitations.
This new type of CPA is capable of perfectly depositing a
light beam in a weak absorber over a wider spectral range
as compared to a conventional CPA and regardless of the
light beam’s spatial wavefront.
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