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Supplemental Material for “Detecting and Focusing on a Nonlinear Target in a
Complex Medium”

I. THEORY

We consider a system without free charges and no magnetisation so that the wave equation is given by

∇× (∇×E) = −µ0∂
2
tD. (S1)

We can now split up the electric displacement field D = ϵ0ϵE + PNL into a linear part given by the relative electric
permittivity ϵ and a polarization part PNL[E], which is nonlinear in E. We are now going to make use of the Green’s
tensor Gω of the linear system at frequency ω with outgoing boundary conditions, i.e.

∇× (∇×Gω)(r, r
′)− ω2

c2
ϵ(r)Gω(r, r

′) = 1δ(r − r ′). (S2)

This definition allows us to rewrite the monochromatic solution of the wave equation at frequency ω using the Green’s
tensor in the far field

Eω(r) = EL
ω(r) +

k2

ϵ0

∫
Gω(r, r

′)PNL
ω [E(r ′)]dr ′, (S3)

where k = ω/c, EL
ω describes the incident field component at frequency ω scattered in the linear system (i.e. ∇×(∇×

EL
ω) + k2ϵEL

ω = 0) and PNL
ω (E) the nonlinear polarization field at frequency ω corresponding to the full electric field

E. We want to emphasize here that PNL
ω (E) depends in general on the full electromagnetic field E at all frequencies

and not just the field component Eω at frequency ω. This occurs in cases such as second harmonic generation, where
the polarization field P2ω at 2ω depends on the electric field component Eω at ω.

A. Separating the linear and nonlinear contributions

Our first goal is going to be to separate these two contributions. For this we can make us of the fact that the linear
scaling of the output field with respect to the input field is broken due to the presence of the nonlinearity. We proceed
by varying the strength (quantified by α) of the incident field EL,in

ω → EL,in
ω α, which produces a predictable linear

response in the linear contributions of the scattered field EL,α
ω = EL

ωα. Therefore by varying α we can extract the
nonlinear contributions of the field by removing exactly those contributions with linear scaling

Eα+∆α
ω − α+∆α

α
Eα

ω =
k2

ϵ0

∫
Gω(r, r

′)

{
PNL

ω [Eα+∆α(r ′)]− α+∆α

α
PNL

ω [Eα(r ′)]

}
dr ′ (S4)

whereby the superscript α, α + ∆α quantifies the strength of the incident field. The left hand side of the equation
now effectively corresponds to a field that originates at the nonlinearity and propagates out of the system according
to the Green’s tensor of the corresponding linear system Gω(r, r

′). This already shows that a nonlinearity can be
detected just by observing the divergence of the outgoing field from the linear field strength scaling property. In order
to rewrite this expression to Eq. (2) of the main text we divide by α+∆α and define the difference of the normalized
fields δEω(r) = (α+∆α)−1Eα+∆α

ω (r)− α−1Eα
ω(r), which satisfies

δEω(r) =
k2

ϵ0

∫
dr ′Gω(r, r

′)δPNL
ω (r ′) , (S5)

with δPNL
ω (r ′) = (α+∆α)−1PNL

ω [Eα+∆α(r ′)]− α−1PNL
ω [Eα(r ′)]. In the next section we are going to see how this

can be exploited to create a focusing field on a point-like target.

B. Focusing on the nonlinearity

Our next objective will be to find an incident wavefront that focuses onto the location of the nonlinearity. We
reverse the outgoing finite difference field (assumed non-zero from here on) derived in the previous section so that the
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incident field is given by Eopt
ω = δE∗

ω in the far field and creates a focus at the nonlinear dielectric. This can be seen
for systems, where ϵ is real valued (i.e. no absorption or gain present) by using Green’s identity to identify the linear
response EL,opt

ω of the system to the incident field δE∗
ω, i.e. a system with the nonlinearity removed,

EL,opt
ω (r1) =

∫
S3
R

[n×Gω(r, r1)] · [∇×EL,opt
ω ]− [∇×Gω(r, r1)] · [n×EL,opt

ω ]dσ, (S6)

where S3
R is the surface of a sphere with large radius R centered at the origin. Due to the Green’s function having

outgoing boundary conditions (Silver-Müller radiation condition), the outgoing part of EL,opt
ω does not contribute to

this equation and we thus get

EL,opt
ω (r1) =

∫
S3
R

[n×Gω(r, r1)] · [∇× δE∗
ω(r)]− [∇×Gω(r, r1)] · [n× δE∗

ω(r)]dσ. (S7)

We can simplify this expression by using the Green’s function identity

−2iIm(Gω(r0, r1)) =− 2i

∫
S3
R

(∇× Im(Gω)(r, r1)) · (n×Gω(r, r0))− (n× Im(Gω)(r, r1)) · (∇×Gω(r, r0))dσ

=

∫
S3
R

(∇×G∗
ω(r, r1)) · (n×Gω(r, r0))− (n×G∗

ω(r, r1)) · (∇×Gω(r, r0))dσ.

(S8)

The second equality holds due to the outgoing boundary condition of Gω. Note that we avoided the ambiguity of the
dyadic Green’s function in the source region [S1] in Eq. (S7)/(S8) because EL,opt

ω , Im(Gω) are solutions of the source
free wave equation inside the system.

By combining Eq. (S5) with (S7) and (S8) this gives us the linear contribution of the field at the nonlinearities

EL,opt
ω (r) = −2ik2

ϵ0

∫
ImGω(r, r

′)(δPNL
ω (r ′))∗dr ′. (S9)

Since we assumed that the probing field produces a nonlinear response, i.e., δEω ̸= 0, it follows directly from the
definition that δPNL

ω (r,′ ) must also be non-zero. Eq. (S9) therefore implies that the electric field within the nonlinear
region EL,opt

ω (r) can be expected to be non-zero.
Overall for general nonlinearities (e.g. multiple nonlinearities, extended nonlinearities in space) our method is able

to identify incident states that focus at the spatial region, where these non-linearities are located. However, both the
spatial correlations of the electromagnetic field, captured by Im Gω(r, r,

′ ), and the nonlinear response of the target,
δPNL

ω , obfuscate the exact field intensity at the target. This highlights the need for additional system information,
such as details of the nonlinearities in the system, in order to find the optimal input wavefront for focusing. In our
case we overcome this by considering systems with only a single input mode that couples to the nonlinearity such as
in the case of a nonlinearity made up of an antenna measuring only a singular polarization direction connected to a
LNA or a point-like nonlinearity in restricted systems with only a singular polarization degree of freedom.

C. Point-like nonlinearity

We consider a point-like nonlinearity in the Rayleigh regime with center at r0 volume VR and diameter R, so that
the far field is given by

Eω(r) = EL
ω(r) +

k2VR

ϵ0
Gω(r, r0)P

NL
ω [E(r0)]. (S10)

Thus the outgoing field pattern is only given by the Green’s tensor of the linear system Gω(r, r0) coupling the location
of the nonlinearity to the far field. Based on this we can simplify Eq. (S9) giving us the linear contribution

EL,opt
ω (r0) = −ImGω(r0, r0)

2ik2VR

ϵ0
(δPNL

ω (r0))
∗. (S11)

Thus in the linear reference system a focus can be created at the location of the nonlinearity. In the case, where PNL
ω

is restricted to a singular polarization direction (e.g. antenna) then only a singular input wavefront can focus onto
our target and the focus is therefore optimal.
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II. FAR FIELD DESCRIPTION

We consider the case of waves at the frequency ω and a basis of the wavefronts in the far field En
ω so that the in-

and outgoing fields have the corresponding coefficients cin, cout (see section IIA).We will for now focus on the case,
where the nonlinearity only couples to the system through a single polarization degree of freedom (e.g. an antenna
or a system allowing only a single polarization direction), while the more general case is considered in section II E. In
linear systems these coefficients can be connected by the linear scattering matrix SL. However in our case this does
no longer hold true due to the nonlinearity violating the superposition principle, where the connection cout = Ŝ(cin) is
given by the non-linear scattering operator Ŝ. Luckily, those incident fields that do not interact with the nonlinearity
stay linear, which means that for a point-like nonlinearity an incident field quantified by d∗ can be found, so that all
orthogonal incident fields do not interact with the nonlinearity, i.e.

Ŝ(cin)− SLcin = 0 (S12)

whereby SL is the scattering matrix of the linear system without the nonlinearity. This can be seen by considering
that the vector d corresponds to the far field coefficients of Gω(r, r0) in our chosen basis, i.e. dj = −i

2ωµ0

∫
S3
R
(n ×

(Ej
ω)(r)) · (∇ × Gω(r, r0)) − (∇ × (Ej

ω)(r)) · (n × Gω(r, r0))dσ (see section IIA). Using Green’s identity we can
see that dj = i

2ωµ0
(EL,j

ω )(r0), where EL,j
ω corresponds to the solution of the linear system of the far field mode

j. Thus if we take an incident field in the input channels cin · d = 0 then the linear part of the field is given by
EL

ω(r0) =
∑

j cjE
L,j
ω (r0) ∝ d · c = 0, showing that no field is present at the location of the nonlinearity. Due to

the non-linear polarization PNL being only non-zero for electromagnetic fields that interact with the non-linearity
(E(r0) ̸= 0), this means that only the components of cin parallel to d∗ result in differences between Ŝ and SL, i.e.

Ŝ(cin)− SLcin = Ŝ(P̂d∗cin)− SLP̂d∗cin, (S13)

where P̂d∗ = d∗dT /|d|2 is the projection operator onto the vector d∗. We can simplify this even further by noting
that Eq. (S10) tells us that the part of the outgoing field due to the non-linearity results in an outgoing field given
by Gω(r, r0), which is described by d so that we get

Ŝ(cin)− SLcin = P̂d

(
Ŝ(P̂d∗cin)− SLP̂d∗cin

)
, (S14)

where P̂d is the projection operator onto the vector d. By inserting the definition of the orthogonal projection
operators we can now describe the scattering of the nonlinear scattering operator by

Ŝ(cin) = SLcin +
dd†

|d|2

(
Ŝ

(
d∗dT cin

|d|2

)
− SLd

∗dT cin

|d|2

)
= SLcin + df(d · cin), (S15)

whereby SL is the scattering matrix of the linear system without the nonlinearity and f is the nonlinear scalar function
describing the deviation of Ŝ from a linear relation, i.e. f(x) = d†[Ŝ(d∗x/|d|2) − SLd∗x/|d|2]/|d|2. This nonlinear
operator can now be probed using a basis of incident channels, which can be conveniently summarized in the matrix
Sα so that we have

Sα
m,n = SL

m,n + dmα−1f(αdn), (S16)

where we choose the basis of incident channels cin = αen for all n, quantify the strength of the incident fields by α
and normalize the outgoing fields by α. This has the advantage that for linear system this reduces to the scattering
matrix, while we can probe the nonlinear contributions of the scattering operator by varying α. Note however that
Sα does not fully describe the operator Ŝ, due to the loss of the superposition principle in nonlinear systems, but
only the response of the system for a basis of incident channels.

A. Connecting the far field patterns with the scattering matrix

We connect the scattering matrix with the far field pattern using the hermitian form based on the poynting vector
[S2]

⟨E1
ω, E

2
ω⟩ =

1

2

∫
S3
R

[(E1
ω)

∗ ×H2
ω − (H1

ω)
∗ × E2

ω] · dn, (S17)
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where S3
R is the surface of a sphere with large radius R centered at the origin. We can now use this product to define

a basis of incident states Ej
ω with power normalization, i.e.

⟨Ei
ω, E

j
ω⟩ = −δi,j . (S18)

We now define the input coefficients cin corresponding to a field Eω by

cini = −⟨Ei
ω, Eω⟩. (S19)

Similarly the outgoing field if given by (Ej
ω)

∗, which can be used to define the outgoing coefficients cout by

couti = ⟨(Ei
ω)

∗, Eω⟩. (S20)

The scattering operator is now given by the relation cout = Ŝ[cin], which is linear in the case where no non-linearity
is present. Finally, we can define the outgoing coefficients d corresponding to the Green’s function (e.g. Eω(r) =
Gω(r, r0), Hω = ∇× Eω/(iµ0ω)) by

di = ⟨(Ei
ω)

∗, Gω(·, r0)⟩ =
−i

2ωµ0

∫
S3
R

(n× (Ej
ω)(r)) · (∇×Gω(r, r0))− (∇× (Ej

ω)(r)) · (n×Gω(r, r0))dσ. (S21)

B. Extracting the focusing field

We will now use Eq. (S16) at two incident powers α, α+∆α to define a matrix version of Eq. (S5). The results are
summarized by the matrices Sα, Sα+∆α, which gives us

∆Sm,n = (Sα+∆α − Sα)m,n = dm
(
(α+∆α)−1f((α+∆α)dn)− α−1f(αdn)

)
. (S22)

This rank-one matrix contains information of at least one incident channel that interacts with the nonlinearity, allowing
us to apply a singular value decomposition on ∆S to extract d. Note that if multiple far field modes couple to the
nonlinearity (e.g. non-scalar waves, multiple polarization degrees of freedom) or if multiple nonlinearities are present
then the non-linearity acts on the subspace of these modes. In this case f would need to be replaced by a function
describing the nonlinear interaction between these modes and the rank of the matrix ∆S will be the dimension of this
subspace (see section II E). In general while we can still use ∆S to identify modes that focus on the nonlinearity, in
order to create an optimal focus more information on the non-linearity is needed.

C. Reciprocity and nonlinearity detection

One important property in most linear systems is the reciprocity condition, which can now break due to nonlinear
interactions. In our case this turns out to be

(Sα − (Sα)T )m,n = dmα−1f(αdn)− dnα
−1f(αdm). (S23)

While in theory it is not guaranteed that we will see reciprocity breaking using Sα (e.g. if d corresponds to a basis
vector dn ∝ δm,n), in practice we saw that this can serve as a useful tool for the detection of the nonlinearity.

D. Lowest singular value and absorption

We find a strong average correlation between the wavefront for maximal focusing cin = d∗ and the eigenvector UN

corresponding to the smallest eigenvalue σN of (Sα)†Sα that gives minimal reflection from the cavity and therefore
maximal absorption [S3]. The correlation coefficient averaged over the frequency range is ⟨|U∗

N · cin|⟩ ∼ 0.8. As the
cavity is closed, absorption at the target is indeed the main loss mechanism. The correlation coefficient is however
below unity since other dissipative mechanisms such as uniform absorption within the cavity also takes place. Small
eigenvalues σN → 0 indicate that the incident energy is almost completely dissipated within the target.
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(a) (b)

FIG. S1. (a, b) Intensity map within the system for cin = d∗ for a nonlinearity which intensity-dependent index is given by
Eq. (S26). Panel (a) corresponds to case 1 and panel (b) to case 2. Both maps are normalized by the maximum value obtained
for the optimized wavefront. The white dots represent the location of the metallic scatterers and the pink circle the location of
the nonlinear target.

E. Extended and multiple nonlinearities

We will now consider extended and multiple nonlinearities Di. Similar to section II the far field modes that couple
to the regions of these nonlinearities are spanned by Gω(r, r0) for r0inD = ∪iDi, which we will describe in the far
field by the basis d1,d2, . . . ,dN of dimension N . With the same arguments as in section II we can now show that for
an incident field quantified by c and c ·di = 0 for all i, the corresponding electric field in the linear system disappears
at the locations of the nonlinearities, i.e. EL

ω (r0) = 0 for r0inD. As such the vectors (di)∗ span the space of input
modes that can couple to the nonlinearity and di the outgoing modes that the nonlinearity couples to. Using this we
now write the scattering operator

Ŝ[cin] = SLcin +

N∑
i=1

difi(d
1 · cin, . . . ,dN · cin), (S24)

for the non-linear functions fi. Next we consider the difference matrix given by

∆Sm,n =
∑
i

dim
(
(α+∆α)−1fi((α+∆α)d1n, . . . , (α+∆α)dNn )− α−1fi(αd

1
n, . . . , αd

N
n )
)
. (S25)

We can see that the dimension of ∆S is at most the number of in coupling modes N and that the space of left
singular values is spanned by di. This shows that we can use ∆S to extract the incident wavefront that focus on
the nonlinearities. However it is important to note that in general the vectors di will not be the set of left singular
vectors, due to

(
(α+∆α)−1fi((α+∆α)d1n, . . . , (α+∆α)dNn )− α−1fi(αd

1
n, . . . , αd

N
n )
)
being in general not orthogonal

for different i.

III. SIMULATIONS FOR CONTROLLED NONLINEAR BEHAVIOR

We present the results of numerical simulations obtained with COMSOL. The goal here is to demonstrate the
versatility of the method with respect to the type of nonlinearity present in the system. We consider a 2D cavity
with 9 antennas on each side at a frequency f = 13.51 GHz. The field inside the cavity is randomized through the
presence of 14 randomly located metallic scatterers of 1 mm radius. The nonlinear target is defined as a dielectric
scatterer with a 1 mm radius and Kerr-like index given by:

n =

{
n0 + n2|Eω|2 case 1

n0 − in2|Eω|2 case 2,
(S26)

where the case 1 corresponds to nonlinear dispersion, and the case 2 corresponds to nonlinear absorption. The
intensity maps obtained from the first left singular vectors of ∆S in each cases (as described in the main text) are
shown in Fig. S1. The same locations are used for the scatterers and the target inside the system, and for the value
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of the nonlinear response n2 = 5 · 10−6 m2/V2. In both cases the incident wavefront obtained from the SVD focuses
on the target regardless of the chosen nonlinear function, showing that the approach is independent of the type of
nonlinearity.

IV. CORRECTION OF THE PHASE FOR BROADBAND SIGNALS

The wavefront for optimal focusing in space and time corresponds to the time-reversed (or equivalently phase-
conjugate) of the transmission coefficient copt(ω) = t∗(ω). The phases at each frequency are aligned at the focus,
meaning that the scattered wavefront copt(ω) = ∆S(ω)copt(ω) acquires a phase equal to arg[t(ω)]. We therefore
determine the phase ϕ(ω) from the condition arg

[
cineiϕ∆Scineiϕ

]
= 0. Because both cineiϕ and cinei(ϕ+π) satisfy

this condition, we finally exploit the continuity of ϕ(ω) over the bandwidth to correct π-phase shifts.
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