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Wavefront shaping techniques allow waves to be focused on a diffraction-limited target deep inside
disordered media. To identify the target position, a guidestar is required that typically emits a frequency-
shifted signal. Here, we present a noninvasive matrix approach operating at a single frequency only, based
on the variation of the field scattered by a nonlinear target illuminated at two different incident powers. The
local perturbation induced by the nonlinearity serves as a guide for identifying optimal incident wavefronts.
We demonstrate maximal focusing on electronic devices embedded in chaotic microwave cavities and
extend our approach to temporal signals. Finally, we exploit the programmability offered by reconfigurable
smart surfaces to enhance the intensity delivered to a nonlinear target. Our results pave the way for deep
imaging protocols that use any type of nonlinearity as feedback, requiring only the measurement of a
monochromatic scattering matrix.
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Introduction—Wavefront shaping techniques can parti-
ally counteract the effect of disorder by coherently con-
trolling wave-matter interaction [1–3]. Of particular interest
is the possibility to focus waves on a diffraction-limited
focal spot inside or behind a strongly scattering medium [4]
or to deposit energy to a target region [5,6]. In the linear
regime, when the field at the target location is directly
accessible, the incident wavefront for focusing can be
optimally tailored in space and/or time using techniques
such as phase conjugation for monochromatic waves
[7–10], time reversal for broadband signals [11], or the
eigenstates of an operator constructed from the scattering
matrix [6,12,13]. However, embedding a detector within a
scattering medium is an invasive procedure that rules out
many applications in deep optical imaging, wireless com-
munications, wireless power transfer, or sensing. Non-
invasive approaches therefore rely on the presence of a
guidestar within the medium [3,9,14–16].
The nonlinearity of wave-matter interaction has emerged

in this context as an efficient approach for deep imaging.
Nonlinear techniques rely on the localized feedback gen-
erated by a nonlinear target. In acoustics, microbubbles
serve as contrast agents for ultrasound imaging [17,18],
while in optics, Raman microscopy [19], two-photon
fluorescence [20], or second-harmonic generation [21,22]
have been exploited to obtain a diffraction-limited focal
spot [16,23]. In the microwave regime, most electronic
devices, even as simple as a diode [24–26], exhibit a
nonlinear behavior and can be detected by harmonic radars

in cluttered environments [27,28]. All these techniques
nevertheless require complex experimental setups to detect
and/or filter the frequency-shifted nonlinear signal.
A local perturbation of a linear scattering medium can

also serve as a guidestar [29–35]. Any change within a
disordered sample is encoded in the random speckle pattern
resulting from the complex interaction of the incident wave
and the sample [36]. Therefore, the derivative of the
scattering matrix SðωÞ with respect to a parameter θ,
i.e., ∂θS, contains information about θ. For unitary scatte-
ring matrices, the eigenvalues of the generalized Wigner-
Smith operator Q ¼ −iS−1∂θS indicate how strongly the
conjugate quantity to θ is affected by a variation [29,30,37].
The operator ð∂θSÞ†∂θS also turns out to measure the
content of Fisher information carried by the scattered wave
on the parameter θ [32,38,39]. The eigenstates of these
operators thus provide the solution for maximal focusing,
micromanipulation, or for optimal sensitivity with respect
to θ. However, setting up these operators requires a
variation of the target parameter(s) in the first place, which
is hard to accomplish in linear static systems without
invasive external intervention inside the scattering medium.
Here, we present a noninvasive approach for optimal

focusing on a nonlinear target in static scattering systems.
Most importantly, our approach does not require a meas-
urement of a higher-harmonic response of the target device
or any other frequency-shifted signal. This allows for the
detection of all types of nonlinearities (whether they induce
nth order harmonic generation, or a Kerr effect for
example), and it does not rely on prior knowledge on
the medium or on the target. All these requirements are
satisfied by leveraging the nonlinear scattering response,
which we probe by tuning the incident power [22,40].
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Theoretical analysis—We consider a system made up of
dielectric obstacles described by the dielectric function
ϵðrÞ, which we probe by coherent monochromatic electro-
magnetic waves at frequency ω. Our objective is to find an
incident field Ein

ω that creates an optimal focus on a target
described by the polarization PNLðEÞ, which is nonlinear in
the electric field E, embedded inside this scattering
environment.
To disentangle the linear (L) from the nonlinear (NL)

scattering response, we write the far-field solution Eα
ωðrÞ at

frequency ω for an incident field strength α using the
following exact integral equation:

Eα
ωðrÞ ¼ αEL

ωðrÞ þ
k2

ϵ0

Z
R3

dr0Gωðr; r0ÞPNL
ω ½Eαðr0Þ�: ð1Þ

Here, EL
ωðrÞ describes the linear component of the

field for normalized amplitude α ¼ 1 and Gωðr; r0Þ is the
Green’s tensor of the system without nonlinearities.
The target’s nonlinear polarization field component at
frequency ω is given by PNL

ω ½Eαðr0Þ� and depends in gene-
ral on all frequency components of the electric field
Eα
ω1
ðr0Þ;Eα

ω2
ðr0Þ;… at r0. However, for easier notation we

write this in Eq. (1) as a dependence on the full
field EαðrÞ ¼ R∞

0 Re½Eα
ωðrÞe−iωt�dω.

The idea is now to eliminate the linear term and to time-
reverse the nonlinear signal to create a focus at the target
(see Supplemental Material [41] for details). We achieve
this by varying the amplitude of the incident field by Δα,
then the difference of the amplitude-normalized fields
δEωðrÞ ¼ ðαþ ΔαÞ−1EαþΔα

ω ðrÞ − α−1Eα
ωðrÞ satisfies

δEωðrÞ ¼
k2

ϵ0

Z
R3

dr0Gωðr; r0ÞδPNL
ω ðr0Þ: ð2Þ

We see that δPNL
ω ðr0Þ ¼ ðαþ ΔαÞ−1PNL

ω ½EαþΔαðr0Þ� −
α−1PNL

ω ½Eαðr0Þ� acts as a source term for δEωðrÞ with the
coupling from the polarization field to the far field being
given by the Green’s tensor Gωðr; r0Þ. Thus, as long as the
incident field interacts with the nonlinearity, the time-
reversed of δEðrÞ provides a focus from the far field onto
the nonlinear target.
This becomes especially apparent for a pointlike non-

linearity located at r0, where the field difference provides
the exact coupling between the location of the nonlinearity
to the far field, i.e., δEωðrÞ ∝ Gωðr; r0Þ. If we further
assume that only a single electromagnetic mode couples to
the nonlinearity, then the focus that is created at r0 with this
method is necessarily optimal for a given incident strength
α. Note that throughout the article, “optimal” and “maxi-
mal” refer to states obtainable in the linear regime because
the nonlinearity is assumed to be weak (perturbative
regime).
From now on, we focus on scalar waves. For linear

systems, the linear scattering matrix SL connects all input

and output channels cin and cout through cout ¼ SLcin. For
nonlinear systems, the superposition principle and therefore
this linear relation no longer hold since the measured output
field in cout must encapsulate the coupling between the
incident field emitted in cin and the nonlinearity. This
nonlinear response emanates from the position of the
nonlinearity r0 and scatters into the output channels
quantified by the coefficient vector d in accordance with
the Green’s function Gωðr; r0Þ. Our goal is to split the
incident field into a linear part that does not interact with
the nonlinearity and a nonlinear part. The Green’s identity
tells us that all incident fields cin that are orthogonal to the
phase conjugate of d (i.e., d�) have vanishing electric fields
at the location of the nonlinearity EL

ωðr0Þ ¼ 0. This means
that the nonlinear contribution to the output field must be a
function of d · cin,

cout ¼ SLcin þ α−1dfðd · cinÞ; ð3Þ

where the nonlinearity of the system is captured by the
arbitrary nonlinear scalar function f (see Supplemental
Material [41]).
If we now probe the system at a given input power α, the

resulting input-output relation can be expressed through the
following power-dependent scattering matrix:

Sαm;n ¼ SLm;n þ α−1dmfðαdnÞ; ð4Þ

where Sαm;n corresponds to the output in channel m for an
input in channel n. However, it is important to note that Sα

is not a conventional scattering matrix. While it describes
the scattering for the set of incident fields at a given power,
it cannot encompass the full nonlinear nature of Eq. (3).
Nevertheless, Sα can now be used to identify the optimal

focusing input by using the difference matrix

ΔSm;n¼SαþΔα
m;n −Sαm;n

¼dmfðαþΔαÞ−1f½ðαþΔαÞdn�−α−1fðαdnÞg: ð5Þ

The rank of the matrix is equal to the number of pointlike
nonlinearities (here one), each coupling to the far field
through a unique incident wavefront. d can now be
estimated by applying a singular value decomposition
(SVD) on ΔS ¼ UλV�. The left singular vector U1 of
the largest singular value λ1 corresponds to d. By applying
a phase conjugation, the incident wavefront d� provides
maximal focusing onto the target.
The nonlinear scattering coefficient of the target depends

on the field Enðr0Þ transmitted by channel n. In the absence
of global symmetries, we have Enðr0Þ ≠ Emðr0Þ in general
for n ≠ m. In contrast to linear systems with modulation of
an antenna impedance or dielectric permittivity of a
subwavelength object [30,31,34,35], the right and left
singular vector of ΔS are therefore not equal.
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Experimental results—In our first experiment, we con-
sider a nonlinear target embedded within a two-dimen-
sional scattering system working in the microwave range.
The two-dimensional geometry is chosen so that the field
can be measured “inside” the system. The target consists of
a high-Q dielectric cylinder with a refraction index of n ≈ 6
coupled in its near field to a wire antenna connected to a
low-noise amplifier (LNA). This nonlinear passive target—
the LNA is not powered—is conceptually similar to the
coupling of a resonator to a short-circuited diode found in
Refs. [24–26] for nonlinear coherent perfect absorption or
the formation of defect modes. However, we find that our
target exhibits a more pronounced nonlinearity due to the
presence of transistors in the LNA. This is crucial since
the target is excited from its far field. We characterize the
reflectivity of the LNA by connecting it to a single-mode
waveguide whose reflection parameter jrðωÞj2 ¼ jS11j2 is
measured for increasing input power P. While jrðωÞj2 is
constant at low powers indicating a linear behavior, we
observe in Fig. 1(b) that jrðωÞj2 rapidly decreases for
P > 0 dBm before saturating for P > 10 dBm. The non-
linearity therefore results from enhanced absorption within
the LNA at high power.
The nonlinear target is then placed within a multimode

waveguide (cavity) supporting a single mode in its vertical
direction between 12 and 15 GHz [45,46]. Seven metallic
and 13 dielectric scatterers are randomly placed inside the
cavity to randomize the field. Placing the nonlinear device
in a disordered cavity highlights the performance of the

approach in cases where the Green’s functions within the
system are unknown. The flux-normalized matrix SαðωÞ is
measured using a vector network analyzer between N ¼ 7

single-mode waveguides that are connected to the left
interface of the cavity by coax-to-waveguide transitions.
At the right interface, we place an absorbing foam to mimic
open boundary conditions. The difference matrix ΔSðωÞ is
constructed from measurements of SαðωÞ at two incident
powers P1 ¼ 0 dBm (S ¼ SL) and P2 ¼ 12 dBm.
Two peaks in the spectrum of the first singular value

λ1ðωÞ of ΔS are observed at 12.68 and 13.35 GHz in
Fig. 1(c), corresponding to resonances of the high-Q
dielectric cylinder. The enhancement of the field intensity
within the cylinder at resonance results in a strong coupling
with the LNA, and thereby increases nonlinear effects. We
then scan the normalized field tnðx; y;ωÞ inside the
medium for each source channel n by translating a short
wire antenna in holes drilled into the top plate of the cavity.
These measurements allow us to reconstruct the intensity
map Iðx; y;ωÞ for any arbitrary incident wavefront cin,
Iðx; y;ωÞ ¼ jcin�ðωÞ · tðx; y;ωÞj2. For the phase conjugate
of the first singular vector cin ¼ d�, a strong enhancement
of the intensity at the resonance ωn is observed in Fig. 1(f)
compared to random illumination in Fig. 1(e), since d gives
the vector of Green’s functions between the sources and the
target. The intensity at the focus at 12.68 GHz is enhanced
on average by a factor η ≃ 4.7 relative to a random incident
wavefront.

FIG. 1. (a) Photograph of the experimental setup. A resonator coupled in the near field to a wire antenna connected to a (nonlinear)
low-noise amplifier (LNA) is located within a two-dimensional multimode waveguide (cover plate not shown). The scattering matrix is
measured using seven antennas at the left interface. An absorbing foam is placed at the right interface to mimic open boundary
conditions. (b) Reflection parameter r ¼ jS11j2 of the LNA as a function of incident power P for an empty single-mode waveguide at
f0 ¼ 12.68 GHz with the second port connected to the LNA (powered–“on”—or not powered—“off”) terminated by an open-circuit
condition. (c),(d) Spectra of the singular values λn ofΔS (c) and asymmetry factorA (d). The nonlinearity is maximal at the resonance of
the nonlinear target f ¼ f0 indicated by a black-dashed line. (e),(f) Intensity map within the system for a random illumination (e) or with
cin ¼ d� (f). Both maps are normalized by the maximum value obtained for the optimized wavefront.
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Whereas we probed the system at two incident powers in
order to apply a focus onto a target, we can instead exploit
the reciprocity of linear systems for the detection of the
nonlinearity. For linear systems, the scattering matrix is
symmetric; however, the nonreciprocity induced by the
nonlinearity breaks the symmetry of Sα [47–49], i.e.,

ðSα − ðSαÞTÞm;n ¼ dmα−1fðαdnÞ − dnα−1fðαdmÞ: ð6Þ

Thus, detecting the presence of a nonlinearity in practice
requires a single measurement of SðωÞ at high power by
measuring the norm of the asymmetric part

A ¼ kSα − ðSαÞTkF; ð7Þ

where k · kF represents the Frobenius norm. At low power,
AðωÞ is dominated by the noise level as the system is
operating in the linear regime [see Fig. 1(d)]. However, at
high power, AðωÞ exhibits similar resonances as λ1ðωÞ.
Note that this reciprocity condition is not completely able
to extract d.
We now demonstrate spatiotemporal focusing on a

nonlinear target. The absorbing foams shown in Fig. 1
are removed and the LNA is connected (without the
resonator) to a single-mode waveguide located at the right
interface. Apart from the nonlinear target, the cavity is now
closed as the antennas at the right interface are terminated
by open circuits (making them reflectors). The LNA is now

powered so that the vector of transmission coefficients tðωÞ
to the target can also be measured by connecting the LNA
to the eighth channel of the vector network analyzer. This is
done only for the purpose of comparison as the measure-
ment of tðωÞ is not necessary to determine the incident
waveform. The nonlinearity is nonresonant as the antennas
are matched over a broad frequency range [see Fig. 2(a)].
Fluctuations in λ1ðωÞ arise from multiple scattering within
the cavity.
Although the spatial wavefront for optimal focusing

cinðωÞ ¼ d�ðωÞ is obtained at each frequency through an
SVD, the frequency dependence of the global phase ϕðωÞ
necessary for optimal temporal focusing is still unknown.
We determine ϕðωÞ using the procedure described in
Ref. [34] that aligns the phase of each frequency compo-
nent at the focal point (see Supplemental Material [41]).
The temporal signals found from the inverse Fourier
transform soptðτÞ ¼ FT−1½coptðωÞ · tðωÞ� and sðτÞ ¼
FT−1½t�ðωÞ · tðωÞ� are in excellent agreement with each
other, as shown in Fig. 2(b), demonstrating maximal
focusing both in time and space on the nonlinear
target. The backpropagated signals within the cavity
Iðx; y; τÞ ¼ FT−1½cin� · tðx; y;ωÞ� are presented in Fig. 2(c).
Interestingly, the amplitude of the outgoing field at positive
times is strongly reduced relative to the incident field at
negative times in Figs. 2(c) and 2(d), which indicates strong
absorption within the lossy nonlinear target.

FIG. 2. Experimental results for a powered LNA connected to a single mode coax-to-waveguide transition located at the right interface
of the cavity. (a) Spectrum of the singular values λn of ΔS. (b) Temporal signal at the nonlinear target corresponding to the
backpropagation of the reconstructed signal for maximal focusing in space and time (blue line) and to a time-reversal experiment
(orange line). The maximum value of the cross-correlation between the two signals is 0.99. (c) Real parts of the field at four times
indicated by black dashed lines in (b) obtained from backpropagating the first left singular vector d�. The field around the position of the
target (black dot) could not be probed since the port is located outside the cavity. The input antennas (indicated by black arrows) are
located 30 cm toward the left of the map.
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In environments for which the energy density illuminat-
ing a target is small, wavefront shaping techniques may not
be sufficient to detect the nonlinear signal. We thus
investigate how the environment can be tuned to enhance
the signal at the target [31,50,51]. For this purpose, we
study a three-dimensional enclosure made programmable
using a reconfigurable intelligent surface (RIS) [see
Fig. 3(a)]. For each of the 304 meta-atoms of the RIS,
two states with a phase difference of roughly π in reflection
can be configured electronically. Seven antennas are used
to measure a 7 × 7 scattering matrix in the spectral window
between 4.8 and 5.8 GHz. The eighth antenna is connected
to the nonlinear powered LNA.
The metasurface is first optimized iteratively to maxi-

mize the first singular value λ1ðfÞ of ΔS at a single
frequency fopt ¼ 5.22 GHz. This corresponds to a modi-
fication of the Green’s function inside the system such that
for the wavefront d the intensity at the position of the non-
linear device is increased. The result is shown in Fig. 3(b).
At fopt, the intensity enhancement is 2.3 fold compared to
the average value for random configurations [Fig. 3(c)].
Conclusion—We have demonstrated that nonlinear ele-

ments embedded in a complex medium can be detected and
localized using measurements of the scattering matrix at a
single frequency for two incident powers (no harmonic
generation is required). The monochromatic aspect of this
technique enables the detection of any type of nonlinearity,
and is therefore particularly relevant in cases where the
specific nonlinear response is unknown (nth order har-
monic generation, Kerr-like, etc.). We have shown that this
noninvasive approach enables spatiotemporal focusing on
nonlinear targets. The experiments presented here were
limited to confined geometries but our technique is directly

applicable to open systems. Since smartphones contain
nonlinear elements, this could provide a way to enhance the
focusing of Wi-Fi signals on these devices in complex
environments and may inspire new detection and locali-
zation setups. Our approach is broadly applicable to any
kind of wave and can readily be used in any domain in
which waves are used to probe a medium (such as
acoustics, optics, etc.). In particular, it provides an efficient
way to obtain the focusing wavefront for wireless power
transfer of bioelectronic devices [52].
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