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ABSTRACT

The Wigner–Smith (WS) matrix provides a powerful frame-
work for characterizing the delay properties of scattering
processes in time-invariant propagation environments. When
the underlying scattering matrix is unitary, the WS matrix
is guaranteed to be Hermitian, with real-valued eigenvalues
known as proper delay times. These eigenvalues quantify
the delay experienced by narrowband wave packets shaped
according to the corresponding WS eigenvectors (also known
as “principal modes”). Originally introduced in quantum me-
chanics to describe collision-induced delays in particle scat-
tering, the WS matrix has since found broader applications.
We explore its relevance for wireless multiple-input multiple-
output (MIMO) systems using antenna arrays on both sides
of the radio link. In particular, we highlight that the principal
modes of the WS matrix exhibit robustness to small frequency
shifts, even for the strongly non-unitary scattering matrices
commonly encountered in wireless communication scenarios.

I. INTRODUCTION

Beamforming under various forms of uncertainty and mis-
match has been much investigated, cf. [1]. Here, we demon-
strate the usefulness of the Wigner-Smith (WS) matrix for
computing a joint transmitter-receiver beamformer which is
insensitive to small frequency variations, even in a frequency-
selective propagation environment.

The Wigner-Smith (WS) matrix was originally proposed to
measure the time-delay in nuclear scattering processes [2],
[3], and was later widely employed in electron transport [4]
to determine the time an electron spends in a mesoscopic
conductor. Any eigenvector of the WS-matrix (or “principal
mode”) corresponds to an input state with a well-defined group
delay (also called “proper delay time”) [5], [6], in contrast
to states with a large delay spread. Implementing such states
experimentally was enabled by wavefront shaping tools such
as in acoustics [7], microwave technology [8], [9], and in
optics [10], [11].

The interpretation of the real-valued time-delay eigenvalues
of the Hermitian WS matrix as proper delay times hinges on
the unitarity of the scattering matrix. However, as we show
explicitly below, the corresponding eigenvectors, or “principal
modes” [5], are insensitive to small shifts in frequency even
for non-unitary scattering matrices. Thus, the principal modes

are well-suited as frequency-stable MIMO channel modes for
wireless communications and sensing.

II. PROBLEM FORMULATION

Let H(ω) ∈ CN×M be a general frequency-selective N ×
M multiple-input multiple-output (MIMO) transfer function
linking M transmit antennas with N receive antennas in the
noise-free linear model

y(ω) = H(ω)x(ω), (1)

where ω is the angular frequency of interest, x(ω) ∈ CM is
the complex-baseband transmit symbol vector and y(ω) ∈ CN

is the corresponding vector of received antenna samples.
In the following, we will demonstrate the benefits of using

the M × M Wigner-Smith (WS) matrix (+ is the pseudo-
inverse)

QH(ω) = −jH+(ω)
dH(ω)

dω
, (2)

as transmission of an eigenvector of the WS matrix excites
frequency-stable eigenmode propagation.

To show this explicitly, we maximize the received signal
power at the single angular frequency ω, subject to a constraint
on the tolerated deviation due to a small frequency change,

x(ω) = arg max
x∈CM

∥H(ω)x∥22 , (3)

subject to
∥∥∥∥
dH(ω)

dω
x

∥∥∥∥
2

2

< ϵ . (4)

No further constraints are imposed on x(ω). The correspond-
ing Lagrangian is

L(x, λ) = ∥H(ω)x∥22 + λ

(∥∥∥∥
dH(ω)

dω
x

∥∥∥∥
2

2

− ϵ

)
(5)

with Lagrangian multiplier λ ≥ 0 and we evaluate the KKT
conditions [12]. The solution leads to the minimization of the
generalized Rayleigh quotient

x(ω) = arg min
w∈CM

wH
(

dH(ω)
dω

)H (
dH(ω)

dω

)
w

wHHH(ω)H(ω)w
, (6)

where (·)H denotes Hermitian transpose
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III. FREQUENCY-STABLE PRINCIPLE MODES

The solution to (3)-(4) gives frequency-stable transmit sym-
bol vectors x(ω), i.e., transmit symbol vectors whose receiver-
side shape is insensitive to small frequency changes, i.e.,

H(ω)x(ω) = η(ω)H(ω + dω)x(ω), (7)

where η(ω) ∈ C is a scalar.
Let the transfer function H(ω) be modeled by a tapped

delay-line model, i.e.,

H(ω) =

∞∑

k=0

Hke
−jωτk (8)

with matrix coefficients Hk ∈ CN×M and positive propaga-
tion delays 0 < τ0 ≤ τ1 ≤ . . .. Continuing from (7) gives

H(ω)x(ω) = η(ω)

∞∑

k=0

Hke
−jωτke−jτkdωx(ω) (9)

H(ω)x(ω) = η(ω)

∞∑

k=0

Hke
−jωτk(1− jτkdω)x(ω)

H(ω)x(ω) = η(ω)

(
H(ω)− jdω

∞∑

k=0

Hkτke
−jωτk

)
x(ω)

H(ω)x(ω) =

(
η(ω)dω

1− η(ω)

)
dH(ω)

dω
x(ω) (10)

H(ω)x(ω) = µ(ω)
dH(ω)

dω
x(ω) (11)

Thus, a frequency-stable transmit symbol vector x(ω) solves
the generalized eigenvector equation (11) with µ(ω) = η(ω)dω

1−η(ω) .
A frequency-stable transmit symbol vector x(ω) aligns the
MIMO channel output vector H(ω)x(ω) with dH(ω)

dω x(ω) so
these become collinear.

We assume H(ω) to have full column rank. Then,
the left inverse H+(ω) exists and equals H+(ω) =
(HH(ω)H(ω))−1HH(ω). Multiplying (11) with H+(ω)
gives

x(ω) = µ(ω)H+(ω)
dH(ω)

dω
x(ω). (12)

Thus, a frequency-stable propagation eigenmode is excited by
transmitting an eigenvector of QH(ω) defined in (2) which
is known as the WS matrix [2]–[4]. In physics, the WS time-
delay matrix is defined in terms of the scattering matrix, rather
than the transfer matrix, see the Appendix for a discussion. The
prefactor −j in (2) makes QH(ω) Hermitian when H(ω) is
unitary at ω and small deviations ω + dω.

IV. PROPAGATION GRAPH CHANNEL MODEL

Many analytical wireless MIMO propagation models have
been proposed [13], e.g., based on random matrix theory
[14], transmit- and receive-side eigenmodes [15], and graph-
based models [16]–[18]. In our simulation study, we use
the graph-based model shown in Fig. 1 which adequately
accounts for both specular and diffuse multipath components
in a unified manner. This model is characterized by direct

Fig. 1. Propagation graph in a multi-scattering environment.

propagation D(ω) ∈ CN×M from transmit- to receive-array,
propagation from transmit array to S point scatterers T (ω) ∈
CS×M , propagation from S point scatterers to receive array
R(ω) ∈ CN×S , and propagation from scatterers to scatterers
B(ω) ∈ CS×S , cf. [16, Fig. 3]. The MIMO transfer matrix is

H(ω) = D(ω) +R(ω)[IS +B(ω) +B2(ω) + . . . ]T (ω)

= D(ω) +R(ω)(IS −B(ω))−1T (ω), (13)

where IS is the S × S identity matrix, cf. [17], [18]. This
is valid if the spectral radius of B(ω) is less than 1. All
matrix elements represent spherical waves from/to the anten-
nas/scatterers.

V. SIMULATION

We simulate a propagation scenario at ω = 2π·26GHz (cor-
responding wavelength λ0 ≈ 11.53mm) where the transmitter
and the receiver are equipped with uniform circular arrays
with N = 32 and M = 24 antenna elements, respectively,
at 0.43λ0 ≈ 4.96mm inter-element spacing under Non-Line-
Of-Sight (NLOS) propagation conditions. The wireless link
between both antenna arrays is supported by S = 10 point
scatterers located uniformly at random in a box-shaped volume
as shown in Fig. 2. Edges are drawn to connect the transmit
array to all scatterers. Furthermore, edges connect scatterers
to all scatterers and to the receive array.

We approximate the frequency derivative needed for com-
puting the WS matrix (2) by a finite-difference quotient
evaluated at ω and ω1 = 1.001ω. Numerically computed
singular values of the corresponding WS matrix QH(ω) are
shown in Fig. 3. Note that QH(ω) is non-Hermitian since
H(ω) is not unitary. Therefore, the eigenvalues of QH(ω)
differ from the singular values. We observe that S = 10
singular values are significant.

Figure 4(top) shows the transmit-side beampattern

BT(ω, φT) = 20 log10

∣∣∣∣∣
M∑

m=1

xme−j ω
c u(φT)Trm

∣∣∣∣∣ (14)

in the far-field for the selected WS-matrix QH(ω) eigenmode
x(ω)= (x1, . . . , xM )T (marked with ’∗’ in red). The transmit-
side beampattern BT(ω1, φT) at the adjacent frequency ω1
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MIMO model: N=32, S=10, M=24 (NLOS multiple scattering)
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Fig. 2. Simulated propagation scenario: propagation paths (black lines),
transmit array (cyan), receive array (magenta), S=10 scatterer locations are
marked with ‘×’ (red).

which uses the same beamformer coefficients xm (computed
at ω) is marginally different (marked with ’◦’ in blue), but
the difference is barely visible in this plot. In (14), u(φT) is
the unit vector oriented towards direction of departure azimuth
φT, elevation 0, and rm is the location of the mth transmit
antenna element. For comparison, Figure 4(bottom) shows the
transmit-side beampattern in the far-field for the (ordinary)
eigenmode of H(ω) (marked with ⋄ in red). Comparing 4(top)
with 4(bottom), we observe that these transmit beamformers
differ substantially.

Finally, Fig. 5 shows the corresponding receive-side beam-
patterns

BR(ω, φR) = 20 log10

∣∣∣∣∣
N∑

n=1

yn(ω)e
j ω

c u(φR)
Tr′

n

∣∣∣∣∣ (15)

in the far-field at both frequencies ω and ω1 where y(ω) =
H(ω)x(ω) and y(ω1) = H(ω1)x(ω). In (15), u(φR) is
the unit vector oriented towards direction of arrival azimuth
φR, elevation 0, and r′n is the location of the nth receive
antenna element. Figure 5(top) shows the beampatterns of
the WS-matrix eigenmode. The shape of this eigenmode is
numerically the same at both frequencies which confirms the
desired frequency stability. An important consequence is that
the group delay of this mode is precisely defined. Figure
5(bottom) shows the receive-side beampatterns of (ordinary)
eigenmode transmission, which changes with frequency and
therefore has no frequency stability.

VI. CONCLUSION

The Wigner–Smith (WS) matrix provides a powerful frame-
work for characterizing the delay properties of scattering
processes in time-invariant propagation environments. Here,
it is demonstrated that the WS-matrix eigenmode serves as
a frequency-stable beamformer design. Numerical simulations
of a wireless MIMO link in NLOS conditions illustrate the
concept.
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SVD of WS-matrix, MIMO model: N=32, S=10, M=24 (NLOS multiple scattering)
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Fig. 3. Singular values of WS matrix QH(ω) for scenario in Fig. 2.
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TX Pattern, MIMO model: N=32, S=10, M=24 (NLOS multiple scattering)
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Fig. 4. Transmit beampatterns for scenario in Fig. 2 for WS-eigenmode (top)
and H-eigenmode (bottom).
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RX Pattern, MIMO model: N=32, S=10, M=24 (NLOS multiple scattering)
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Fig. 5. Receive beampatterns corresponding to transmit beamformers in Fig.
4 for scenario in Fig. 2 for WS-eigenmode (top) and H-eigenmode (bottom).
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VII. APPENDIX

In the physics literature, the WS matrix is defined in terms
of the scattering matrix S(ω), i.e.,

QS(ω) = −jS+(ω)
dS(ω)

dω
. (16)

Here, it is shown that QH(ω) defined in (2) is a submatrix of
QS(ω) in (16).

The N ×M MIMO transfer function H(ω) is a sub matrix
of the scattering matrix S(ω) ∈ C(M+N)×(M+N) describing
a wireless system with M+N antennas of which M antennas
are used for transmission and N for reception. Let a(ω) and
b(ω) denote the (M + N)-dimensional vectors comprising
all incoming and outgoing complex wave amplitudes at the
antenna connectors. Assuming linearity, all complex wave
amplitudes are related by the noise-free model

b(ω) = S(ω)a(ω). (17)

It is assumed that reciprocity holds, which guarantees that the
scattering matrix is symmetric, S(ω) = ST(ω) where (·)T
denotes matrix transpose. We define

a(ω) =

[
x(ω)
oN

]
, b(ω) =

[
oM

y(ω)

]
, (18)

S(ω) =

[
ΓT(ω) HT(ω)
H(ω) ΓR(ω)

]
, (19)

and on is the n × 1 zero vector. Reciprocity requires that
ΓT(ω) = ΓT

T(ω) and ΓR(ω) = ΓT
R(ω). All antenna ports

are assumed to be perfectly matched and decoupled at the
frequency point ω, giving ΓT(ω) = 0M and ΓR(ω) = 0N

where 0n is the n × n zero matrix. With these definitions,
(17) becomes

[
oM

y(ω)

]
=

[
0M HT(ω)

H(ω) 0N

][
x(ω)
oN

]
. (20)

The second line in (20) equals (1). The pseudo inverse of S(ω)
in (20) is expressible as

S+(ω) =

[
0M H+

H+T 0N

]
. (21)

Therefore,

QS(ω) = −j

[
0M H+

H+T 0N

]
d

dω

[
ΓT(ω) HT(ω)
H(ω) ΓR(ω)

]
(22)

=

[
QH(ω) ZR

ZT QHT(ω)

]
. (23)

where

ZR(ω) = H+(ω) dΓR(ω)/dω (24)

ZT(ω) = H+T(ω) dΓT(ω)/dω (25)

Hence, QS(ω) is block diagonal with QH(ω) as a subblock
on the main diagonal. In general, the off-diagonal subblocks
ZR(ω) and ZT(ω) appearing in (23) are non-zero. Thus, the
frequency-stable propagation eigenmode computed as the first
M elements of an eigenvector of QS(ω) in (16) is different

from the x(ω) solution in (6). However, the frequency-stability
of the beamformer design holds regardless whether ZR(ω) and
ZT(ω) are zero matrices or not.
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